
Bloom filters for bioinformatics

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Bloom filters for bioinformatics”, Abhishek Tiwari,
2010. doi:10.59350/1082w-a3b44

Published on: June 21, 2010

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/1082w-a3b44


Bloom filters for bioinformatics 1

The Bloom filter was originally developed by Burton H. Bloom back in the seventies and for long time
it was there without any major application. Google is credited for making Bloom filter popular again.
Only after the Google used Bloom filters for their BigTable database system, the idea started grabbing
the attention of larger and diverse audience.

Bloom filter is an extremely space‑efficient probabilistic data structure which enables the quick and
easy membership tests. On positive side, in order to test whether or not an element is a member of a
set, Bloom filters need less memory than any other data structure such as hash tables, simple arrays
or linked lists. On downside, the risk of false positives is higher.

Any task that require checking two sets of data against eachother canbeperformed in anefficientway
using Bloom filter. For instance, one can use Bloom filter to do spell‑checking against a dictionary of
correct words.

Recently Bioinformatics community started usingBloom filters for large scale gene sequence analysis.
Comparing sequences to test similarity is a common task in bioinformatics. For instance,

onemight want to knowwhere a certain gene is located in the chromosome, or which sequence
fragments are similar enough to originate from the same gene. To speed up searches, it is com‑
mon to index sequences in questions as overlapping, substrings (k‑tuples, q‑grams). This index
seems like an obvious target for Bloom filters — large data, time critical, some false positives
anyway — but for some reason, there is almost no such applications that use them. Until now.

Figure 1: Bloom Filter

In a recent paper in journal Bioinformatics, Stranneheim et. al describe a novel Bloom filters based
algorithm, FACS (Fast and Accurate Classification of Sequences) for accurate and rapid classification
of DNA sequences as belonging or not belonging to a reference DNA sequence. In this case reference
DNA sequence can be as large as thewhole genome. This kind of rapid classificationmethod can be a

Abhishek Tiwari 10.59350/1082w-a3b44 2010‑06‑21

http://portal.acm.org/citation.cfm?id=362692&dl=ACM&coll=portal
http://en.wikipedia.org/wiki/BigTable
http://en.wikipedia.org/wiki/Bloom_filter
http://blog.malde.org/index.php/2008/07/31/a-plan-for-bloom-filters/
http://dx.doi.org/10.1093/bioinformatics/btq230
https://doi.org/10.59350/1082w-a3b44


Bloom filters for bioinformatics 2

boon formetagenomic studies where one need to classify sequences as ‘novel’, or belonging to awell
known genome.

A comparative study usingmetagenomic data sets suggest that FACSmethod is at least 21 times faster
compared to algorithms such as BLAT and SSAHA2 with nearly same accuracy. The FACS algorithm is
implemented as PERLmodule and it can be downloaded from CPAN.

Similarly Malde and O’Sullivan have developed some interesting bloom filter based sequence analy‑
sis applications in Haskell. In their analysis they matched randomly selected ESTs against the E. coli
genome which is relatively small compared to human genome.

In terms of memory consumption their Bloom filter application was using a mere 20MB, of which the
Bloom filter itself needed only 2MB compared to the set based implementations those allocated 160‑
190MB of memory for a small test case.

As such its very easy to implement your own Bloom filter, but you can enjoy existing Bloom filter im‑
plementations in various languages.

1. Bloom filter using C++
2. Bloom filter using C
3. Bloom filter using Ruby (gem install bloomfilter, BloominSimple, sBloomFilter, Ruby Counting

Bloom Filter)
4. Bloom filter using Haskell
5. Bloom filter using Java

Abhishek Tiwari 10.59350/1082w-a3b44 2010‑06‑21

http://search.cpan.org/~palvaro/Bloom-Faster-1.6/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
http://dx.doi.org/10.1007/978-3-540-92995-6_13
http://dx.doi.org/10.1007/978-3-540-92995-6_13
http://code.google.com/p/bloomfilter/
http://en.literateprograms.org/Bloom_filter_(C)
http://snippets.dzone.com/posts/show/4235
http://vald.x0.com/sb/
http://github.com/igrigorik/bloomfilter
http://github.com/igrigorik/bloomfilter
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
http://code.google.com/p/java-bloomfilter/
https://doi.org/10.59350/1082w-a3b44

