
Content Management Systems of the
Future: Headless, JAMstack, ADN
and Functions at the Edge

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Content Management Systems of the Future:
Headless, JAMstack, ADN and Functions at the Edge”, Abhishek Tiwari,
2018. doi:10.59350/n3ps2-yts66

Published on: November 03, 2018

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 1

Recently I was asked about content management systems (CMS) of the future ‑ more specifically how
they are evolving in the era of microservices, APIs, and serverless computing. For enterprise cus‑
tomers either undergoing or planning the digital transformation, this is an important question to ask.
Enterprise customers spend a large chunk of their digital and marketing budget on CMS and associ‑
ated modules such as digital asset management (DAM). Most of the CMS vendors dodge questions
of evolution by talking about incremental innovation primarily focused on customer experience (CX)
such as analytics and personalisation. Unfortunately, due to the lack of a good developer experience
(DX) total cost of ownership of a traditional CMSand implementation failure rate remains all‑timehigh.
Strictly speaking, it cost companiesmore to implement andmaintain a CMS than just CMS license fee.
To sum it up, if anything CMS landscape now requires a big shift. Well, you don’t have to wait, CMS of
the future is already here ‑ it is headless, static, distributed, cost‑effective with equal focus on CX and
DX.

Traditional CMS is a dead end

In the last 5 years, traditional CMS landscape is not evolved much ‑ both CMS technologies as well
market maturity remains unchanged. There is hardly any innovation from traditional CMS vendors.
Although some vendors have added support for APIs and cloud servicesmost have not even bothered
to adapt with changing technology landscape. Case‑in‑point, most enterprise CMS vendors lack ro‑
bust full‑site content delivery network (CDN) integration. In fact, CDN support is often limited to static
assets not realising that with the arrival of HTTP2 domain sharding is a thing of past.

When it comes to innovation,most of CMS solutions are constrained by their legacy architecture (read
strong coupling between content management and content presentation) which makes it difficult to
serve content to new types of emerging channels such as apps and devices. API support is critical for
innovation but it needs to be a first‑class citizen and not afterthought. In addition, traditional CMS so‑
lutions lack integration with modern software stack, cloud services, and software delivery pipelines.
Possibility to apply continuous integration (CI) and continuous delivery (CD) concepts with a tradi‑
tional CMS is mostly unheard‑of. At the core, a traditional CMS is a monolith. Any organisation pursu‑
ing microservices strategy will find hard to fit a traditional CMS in their ecosystem.

Lastly, owning an enterprise CMS is a costly affair. Pure CMS licensing cost can be anywhere between
50,000 ‑ 500,000 USD a year. You should expect one‑time implementation cost (depending CMS and
business requirements it can cost 200,000 USD to 3MUSD) and yearly hosting infrastructure cost (pro‑
portional to load and traffic but typically 30,000 USD ‑ 300,000 USD per year). Overall, the total cost
of ownership for a traditional enterprise CMS solution is on the higher end. Cost is one of the key
reasons why most government organisations, mid to large sized business, and publisher prefer open
source CMS options such as WordPress and Drupal. Unfortunately, other than cost advantage Word‑

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 2

press and Drupal have similar deficiencies i.e. legacymonolith architecture. In addition, open source
CMS solutions also struggle with blotted plugin ecosystem.

Figure 1: A ten thousand fit view of a traditional CMS, a headless CMS, and a static site generator.

A few months back, I was pulled into a scenario where a business has been working with a leading
CMS vendor to roll‑out a network of multi‑regional websites. Ironically, the vendor was very hesitant
to adopt or integrate their CMS solution with a CDN. Delivering the whole website via a CDN brings
positive impact on website page response time (5‑10 time times improvement in Time to first byte
‑ TTFB) and overall user experience (2‑4 times improvement in the first meaningful paint assuming
HTTP2 is enabled). If you put your whole website on CDN, technically you don’t need a large number
of server infrastructure and CMS licenses. Using CDN for the whole website, you can offload most
of the website traffic to your CDN which will handle not only large traffic spikes but also reduce the
latency of content delivery.

Now all CMS vendors have their own reasons and financial incentive to not offer you the best solu‑
tion. Unfortunately, to make it worse most of the CMS deals are managed by marketing and digital
functions of the organisation, and in my own experience, these functions are often not equipped to

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 3

ask hard and right questions during the CMS selection process. They often get blindsided by vendor’s
pitchandend‑upmakingdecisionbasedonsome fancydemos (seemypost from2014onAdobeAEM).
In the CMS selection process, developer experience is not a factor, although successful implementa‑
tion and ongoing maintenance require developer friendly tooling and support for modern software
engineering practices. Not tomention, traditional CMS implementation cycle is generally waterfall or
water‑Scrum‑fall at best.

Simply Static

A static site generator (SSG) is nothing but a digital printing press. Using raw content data (such as
Markdown, YAML, JSON files) and templates an SSG engine (such as Jekyll, Hugo, Gatsby, etc.) can
generate an HTML‑only website without involving a CMS. Raw content data along with templates are
version controlled using Git or similar versioning systems. An SSG offers a middle ground between a
complex yet modular CMS solution and a simple yet involved hand‑coded HTML site. Due to strong
templating support, awebsitemanagedbySSGcanbe trulymodular. For SSG, content is oftenwritten
using the Markdown and configured using YAML/JSON data structures and files.

Figure 2: A static site generator (SSG) generates the static HTML site using raw content data,
templates and site configuration.

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 4

The build output of an SSG is generally a directory containing the HTML pages, CSS, Images,
JavaScript, etc. i.e. everything you need to render your site. This directory can be uploaded to a
server and served using a web server such as Apache or Nginx. Alternatively, you can upload output
directory to cloud object/blob storage such as Amazon S3 or Azure Blob Storage and serve your site
from there. Most of cloud object/blob storage services have native support for static site hosting.
When using either of these options, you can deploy a CDN such as Akamai, Amazon CloudFront,
Cloudflare to accelerate the delivery of your static site.

SSGs existed for more than 10 years but initial use cases were limited to personal websites and as a
tool for hackers and hobbyists. SSG became mainstream and got some real traction during the sec‑
ond Obama campaign. In 2011, the Obama campaign started using Jekyll extensively to power their
fundraising platform. They used static websites and campaignmicro‑sites generated by Jekyll in con‑
junctionwith a CDN (Akamai) and consistently observed HTML transfer times around 20milliseconds.
I am yet to find a traditional CMS vendor who can deliver this level of performance on the scale (mil‑
lions of page views per day).

JAMstack

JAMstack is a newway to build content‑heavywebsites andweb apps. Using JAMstack delivers better
performance, higher scalability with less cost, and overall a better developer experience as well as
user experience. Your website architecture is JAMstack if it meets following three criteria: client‑side
JavaScript, reusable APIs powered bymicroservices, and prebuilt Markup. Inmanyways, JAMstack is
obvious next evolution of SSG as it requires templated markup to be pre‑built at deploy time usually
using a site generator. However, it is important to note that JAMstack can serve both static as well
as dynamic content. Using JAMstack you can add dynamic functionality such as user identity, HTML
forms, and personalisation.

Circa 2014, I was working with a big Japanese automotive brand in Australia. They were using a very
legacy CMS or more precisely a document management system which was painful to work with. Due
to the high compliance requirements, their whole website was treated as a digital press. Just to give
you a bit context, they have to ensure prices andmodel specifications displayed on their website are
aligned with showrooms. Any pricing error can cost them hundreds of thousands of dollars if not mil‑
lions. Not tomention, ACCC ‑ consumer watchdog in Australia is quite vigilant about false advertising
claims when it comes vehicle specifications, imagery, and disclaimers. To avoid this, every content
changewaseditorially controlled, auditedby the legal teamsand thenonly anewversionof thewhole
websitewas published. Thismadewhole publishing process really slowandpainful andCMSwaspart
of growing pain. Lastly, the whole website was very slow to load ‑ CDN caching was not effective as a
large number of pages were personalised for pricing and availability depending on suburb and post‑
code.

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 5

Eventually, wedecided tomove them toJekyll. It took about 6monthsbut theoverall resultwas great.
Theyhadanew fully responsiveyet staticwebsite. Page load improved2Xbymoving theentireproject
on CDN which was previously ineffective. Raw data for each version of the website was version con‑
trolled using Git and Git Large File Storage (LFS). We used automated continuous integration(CI) jobs
to create pre‑built Markup using Jekyll. To avoid inconsistent state, rollback and deployments were
atomic i.e. no changes can go live until all changed files have been staged. Once changed versionwas
staged in a new directory, making things live was as simple as changing directory symlink to point to
latest version. All personalisation including pricing, availability, and disclaimers were moved in APIs
and assembled on top of static HTML using the client‑side JavaScript. Without knowing we created a
JAMstack for our client.

Headless CMS

A headless CMS such as Contentful, Zesty has no presentation layer ‑ a key distinction between head‑
lessCMSanddecoupledCMSgiven theybothprovide content asAPIs. WithaheadlessCMS, the taskof
the content presentation is performedby an external client consumingAPIs exposedby headless CMS.
Here are few examples of an external client utilising the APIs exposed by a headless CMS: static site
generator (SSG), single page application (SPA) (client‑side as well as server‑side rendering), a mobile
app, a WordPress site, or an IoT device.

Figure 3: Decoupled CMS vs. headless CMS. Headless CMSs are a subset of decoupled CMSs. Both
offer content APIs but headless lack internal content presentation layer.

Headless CMS or API‑first pattern has been already adopted by many big publishers. As illustrated
below content APIs exposed by headless CMS can be integrated with a variety of external clients for

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 6

content presentation including WordPress, SSG such as Jekyll, Hugo, Gatsby, or client‑side UI frame‑
works such as React, or VueJS. WordPress is an interesting choice for publishers looking to syndicate
their content across a network of websites. Using headless CMS content can be managed centrally
which can be then syndicated via content APIs to a network of WordPress sites using the power of
WordPress plugins. Using WordPress, publishers can still tweak the content presentation on a per‑
site basis like the selection of featured or most discussed content. Due to support for client‑side as
well server‑side rendering React is another popular choice to use with headless CMS.

Figure 4:With a headless CMS you can use a variety of external clients for content presentation
including Wordpress, SSG such as Jekyll, Hugo, Gatsby, or a client‑side UI frameworks such as React,
or Vue.

GraphQL

Some headless CMS solutions such as GraphCMS and Mozaik are taking content infrastructure to the
next‑level by offering GraphQL based content APIs. GraphQL ‑ created and open sourced by Facebook
‑ is a powerful query language for APIs and amore efficient alternative to REST. In a nutshell, GraphQL
enables a client to specify exactly what data it needs from an API ‑ nothing more and nothing less.

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 7

Figure 5: A headless CMS using GraphQL. GraphQL server provides a single endpoint which external
clients can use to query the data and authoring workflow can use to write or update content data
(mutations).

Application Delivery Network

A common theme across static sites, JAMstack, and Headless CMS is the extensive use of the content
delivery network (CDN) to unlock the speed and performance. Caching API response of a headless
CMS seems desirable but not essential ‑ in the majority of cases, you are better served by caching
the prebuilt Markup consuming the API response. Nonetheless, for static sites and JAMstack, CDN is
essential.

Firstly, using a CDN has become a lot easier and cheaper. Now a day there are so many options ‑
Amazon CloudFront, Cloudflare, Google CDN, Azure CDN, Edgecast, Fastly, and the list goes on. Gone
the days when you required to have big fat‑contract with Akamai. Withmost of CDN services, you can
start small and pay as you go.

Secondly, having a CDN in front of origin (static site or APIs) reduces the global and regional latency.
This is achieved by caching content (static HTML page, assets, APIs) at a large number of geographi‑
cally distributed edge locations. In addition, CDNs scale really well ‑ we are talking about 5‑10k con‑
current requests without any issues. To protect origin server from request overload some CDNs also
support origin shield ‑ an additional caching layer between edge and origin servers. Typically, this
mid‑tier caching is adesignate edgeorpop location closer to your origin server andother edge servers
query origin shield rather than origin directly.

Lastly, several static sites hosting platforms such as Netlify have rolled out their own CDN. Netlify
refers their CDN infrastructure as Application Delivery Network (ADN) which has no distinction be‑
tweenedgeandorigin servers. This is primarily to support the atomicdeploymodel and instant cache
invalidation so that there is no risk of stale content or inconsistent state. With ADN, switchingbetween
multiple version of a static site is as easy as changing symlink to a directory. Atomic deploymodel can
be extended to advanced functionalities such as staging, instant rollbacks, phased rollouts, and A/B
testing. Many conventional CDNs are unable to support someof these features due to restrictions and

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 8

limitations around the instant cache purge. For example, someCDNs rate limit the cache invalidation,
while others charge for each cache invalidation request.

Figure 6: Content Delivery Network (CDN) vs. Application Delivery Network (ADN). With ADN your
static site is replicated to all edge servers i.e. zero origin infrastructure.

Functions at the edge

Functionsasa service (FaaS) is anemergingpattern tobuildAPIs andmicroservices at scale. Mostpub‑
lic cloud providers already offer runtime for the functions in respective hosting regions. Now it pos‑
sible to execute functions at the edge ‑ for instance Cloudflare Workers and Amazon Lambda@Edge
offer ability to execute functions more than 100 edge locations globally. Functions at the edge can
be used to not only to personalise the content of a static site but the also to handle dynamic func‑
tionality of the JAMstack. Using Lambda@Edge and Cloudflare Workers you can already perform A/B
testing, authentication, and authorisation, intelligent routing, etc. For authentication and authorisa‑
tion one can use a third‑party identity service like Auth0 or Firebase. By all means, functions at the
edge are immensely powerful compared to conventional Varnish Configuration Language (VCL) used
bymany of CDN providers. With functions at the edge, it is possible to deliver content with zero origin
infrastructure.

Functions at the edge are also used for forms and submissions without having any server‑side back‑
end. In addition, they are also utilised for on‑the‑fly media optimisation ‑ thumbnail generation, re‑
sponsive images, etc ‑ some common functionalities provided by a digital asset management (DAM)
module.

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 9

Figure 7: Functions at the edge is yet another way tomake a static site more dynamic. Depending on
requirements, functions can be executed on request/response of client or request/response of
origin.

Developer Experience

With traditional CMS, developer experience (DX) has been a key pain point which boils down to lack
of support for modern frameworks, microservices, versioning, CI/CD, and DevOps. In order to create
more engaging user experiences, developers need more power and greater flexibility. This includes
the ability to select content presentation frameworks suited to deliver a great user experience in a
native way. As you decouple presentation layer from content management backend, you open the
doors to create more content rich yet data heavy user interfaces.

Strictly speaking, if you are not a publisher like News Corp or Guardian then you don’t have a pure
CMS problem but what you have is a blended content and data problem ‑ a sweet spot for headless
CMS andmicroservices powered JAMstack. For instance, an enterprise bankwill be able to produce a
mobile app with content focused on home loans and supplement that content with the various type
of tools such as home loan calculators, house price trends based on suburbs, etc. by utilising data‑
driven microservices. Unlike traditional CMS model where you generally require two different set of
skills to support your blended requirements (CMS developers and application developers), by using
a headless CMS and JAMstack model you only need full‑stack Javascript developers.

Similarly, in this new ecosystem versioning, CI/CD, and DevOps are first class citizens. SSG, as well
as JAMstack, provide robust versioning using modern version control systems like Git including raw

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66


Content Management Systems of the Future: Headless, JAMstack, ADN and Functions at the Edge 10

content data, templates, and configuration. They can also support branch based environments (such
as Dev, UAT, Staging, and Live) and deployments. A static HTML site is generated from the version‑
controlled raw site using a CI/CD system such as Jenkins or CircleCI and deployed to yourweb servers
automatically or manually. Actual CI build process can be triggered by a version control commit or
headless CMShook post content change. More importantly, platforms likeNetlify and Aerobatic takes
away the pain of building your own CI/CD process and web servers so you can stay focused on devel‑
oping compelling user experiences.

Closing Thoughts

With the timely arrival of headless CMS, JAMstack, ADN and functions at the edge and their ability
to integrate seamlessly with existing static site generators have created a perfect recipe for a much‑
needed disruption in CMS landscape. This newwave of CMS solutions offer enterprise‑ready content
infrastructurewhich is developer friendly, support business agility, andenables rapidbuildof content‑
centric apps.

Abhishek Tiwari 10.59350/n3ps2-yts66 2018‑11‑03

https://doi.org/10.59350/n3ps2-yts66

	Traditional CMS is a dead end
	Simply Static
	JAMstack

	Headless CMS
	GraphQL

	Application Delivery Network
	Functions at the edge
	Developer Experience
	Closing Thoughts

