
Differential Privacy: A Primer

Abhishek Tiwari

Citation: A. Tiwari, ”Differential Privacy: A Primer”, Abhishek Tiwari, 2024.
doi:10.59350/t6p9d-y6y38

Published on: September 22, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 1

Differential Privacy (DP) is amathematical framework that protects individual privacy in data analysis
while allowing useful insights to be extracted. It works by adding carefully calibrated noise to data or
query results, ensuring that including or excluding any single individual’s data doesn’t significantly
change the analysis outcomes. This approach makes it extremely difficult to infer information about
specific individuals, providing a formal guarantee of privacy (see [1]). Differential privacy is widely
used by companies, researchers, and government agencies to analyze sensitive information such as
census data, medical records, and large‑scale user behavior while preserving privacy.

Understanding Utility and Privacy Budget

Utility: This refers to the usefulness or accuracy of the data after applying differential privacy tech‑
niques. Higher utility means the privatized data more closely resembles the original data.

Privacy Budget (ε): This is a measure of the privacy loss. ε represents the maximum amount of in‑
formation that can be learned about an individual from the output of a privacy‑preserving algorithm.
A smaller ε provides stronger privacy guarantees but typically results in lower utility. The challenge
in differential privacy is to balance utility and privacy. As we increase privacy (by decreasing ε), we
typically decrease utility, and vice versa. In practice, ε values often range from 0.1 to 1.

Types of (ε, δ)‑Differential Privacy

Differential privacy comes in several flavors, each with its own privacy guarantees and use cases (see
[2]). In this blog post, we will cover following two,

(ε, 0)‑Differential Privacy

This is the strongest and simplest form of differential privacy. It provides a strict upper bound on the
privacy loss. (ε, 0) differential privacy is also known as pure differential privacy.

Definition: A randomized algorithm 𝑀 satisfies ε‑differential privacy if for all datasets 𝐷1 and 𝐷2
differing on at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑀):

𝑃(𝑀(𝐷1) ∈ 𝑆) ≤ 𝑒𝜀 ⋅ 𝑃 (𝑀(𝐷2) ∈ 𝑆)

where 𝑃 denotes probability.

Use case: When you need the strongest privacy guarantees and can tolerate more noise in the re‑
sults.

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 2

(ε, δ)‑Differential Privacy

This is a relaxation of pure ε‑differential privacy. It allows for a small probability δ of violating the
ε‑privacy guarantee.

Definition: A randomized algorithm𝑀 satisfies (ε, δ)‑differential privacy if for all datasets𝐷1 and𝐷2
differing on at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑀):

𝑃(𝑀(𝐷1) ∈ 𝑆) ≤ 𝑒𝜀 ⋅ 𝑃 (𝑀(𝐷2) ∈ 𝑆) + 𝛿

where 𝑃 denotes probability.

Probability of Leak (δ): The parameter which tells the probability that the privacy loss might exceed
ε. δ is usually chosen to be very small, often smaller than 1/n, where n is the number of records in the
dataset. Common values might be 10^‑5 or 10^‑6.

Use case: When you need to balance strong privacy guarantees with higher utility, and can accept a
very small probability of privacy loss.

Local Differential Privacy

Applies Differential Privacy at the individual data point level before aggregation, rather than to the
entire dataset. Local DP provides the strong guarantee of pure ε‑differential privacy at the individual
data point level. Each individual’s privacy is protected even if the data collector is compromised.

Definition: A randomized algorithm 𝑀 satisfies 𝜀‑local differential privacy if for all 𝑥, 𝑥′ ∈ 𝑋 and all
𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑀):

𝑃(𝑀(𝑥) ∈ 𝑆) ≤ 𝑒𝜀 ⋅ 𝑃 (𝑀(𝑥′) ∈ 𝑆)

where 𝑋 is the input domain.

Use case: When you want to provide privacy guarantees to individual users without trusting the data
collector.

Local vs. Central Differential Privacy

With Local DP, noise is added by individual users before data is sent to the collector. The query layer
aggregates already‑noisy data. No additional noise needs to be added at query time.

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 3

With Central DP, Raw data is sent to the trusted curator. The query layer is where differential privacy
noise is added. Each query on the raw data is processed through the DP mechanism before results
are released.

Local vs. Central Differential Privacy with Untrusted Querier

Local DP Central DP

User 1

User 2

Data

Collector

User 1

User 2

Trusted

Curator

Noisy Data

Noisy Data

Raw Data

Raw Data

Query Layer
(Aggregation of noisy data)

Query Layer
(DP noise added here)

Untrusted

Querier

Query QueryDP Result

DP Applied at User Level DP Applied at Query Level

Figure 1: In local DP the random noise is applied at the start of the process(local) level i.e when the
data is sent to the data curator/aggregator. In Global DP the random noise is applied at the global
level i.e when the answer to a query is returned to the User.

Techniques

Laplace Mechanism

The Laplace Mechanism is widely used for pure ε‑differential privacy. It works by adding noise drawn
from a Laplace distribution to the true output of a function.

Listing 1: Example Python code for Laplace Mechanism

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 4

import numpy as np

def laplace_mechanism(true_value, sensitivity, epsilon):
scale = sensitivity / epsilon
noise = np.random.laplace(0, scale)
return true_value + noise

Example usage
true_count = 1000
sensitivity = 1 # Assuming count query
epsilon = 0.1 # Privacy parameter

private_count = laplace_mechanism(true_count, sensitivity, epsilon)
print(f"True count: {true_count}")
print(f"Private count: {private_count}")

The Laplace Mechanism is particularly useful for numeric queries where we can easily calculate the
sensitivity (maximumchange in the outputwhenone record is addedor removed from thedataset).

Listing 2: Example output

True count: 1000
Private count: 1002.0886527668904

Emoji Suggestions

Apple has been using local differential privacy since iOS 10 to collect user data while preserving indi‑
vidual privacy. Local differential privacy adds noise to the data on the user’s device before it’s sent to
Apple’s servers. One of Apple’s applications of differential privacy is in improving emoji suggestions.
Here’s a basic implementation:

import numpy as np

def privatize_emoji_count(true_count, epsilon):
sensitivity = 1 # Each user can affect the count by at most 1
noise = np.random.laplace(0, sensitivity / epsilon)
return max(0, int(round(true_count + noise))) # Ensure non-negative

integer

Simulate emoji usage data
emojis = ["�", "�", "❤️", "�", "�"]
true_counts = {emoji: np.random.randint(1000, 10000) for emoji in emojis}

epsilon = 0.1 # Privacy budget per emoji

Privatize counts
private_counts = {emoji: privatize_emoji_count(count, epsilon) for emoji,

count in true_counts.items()}

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 5

Print results
for emoji in emojis:

print(f"{emoji}: True count = {true_counts[emoji]}, Private count = {
private_counts[emoji]}")

Calculate total privacy budget used
total_budget = len(emojis) * epsilon
print(f"\nTotal privacy budget used: {total_budget}")

In this example, we simulate theprocess of collecting emoji usagedata. Each emoji count is privatized
using the Laplace mechanism, similar to Apple’s approach. The privacy budget (epsilon) is set to 0.1
per emoji, which is a relatively strong privacy guarantee. The total privacy budget used is the number
of emojis multiplied by the epsilon per emoji.

Listing 3: Example output

�
: True count = 9725, Private count = 9726�
: True count = 6248, Private count = 6238❤️
: True count = 7296, Private count = 7287�
: True count = 3788, Private count = 3760�
: True count = 6026, Private count = 6022

Total privacy budget used: 0.5

Apple uses a similar approach but with more sophisticated algorithms and a carefully managed pri‑
vacy budget to ensure that the overall privacy loss remains within acceptable limits.

Gaussian Mechanism

The Gaussian Mechanism is similar to the Laplace Mechanism but uses Gaussian (normal) noise
instead. It’s often used when we need to satisfy (ε, δ)‑differential privacy, a relaxation of pure
ε‑differential privacy.

import numpy as np

def gaussian_mechanism(true_value, sensitivity, epsilon, delta):
sigma = np.sqrt(2 * np.log(1.25 / delta)) * sensitivity / epsilon
noise = np.random.normal(0, sigma)
return true_value + noise

Example usage
true_average = 50
sensitivity = 1 # Assuming bounded range of data
epsilon = 0.1
delta = 1e-5

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 6

private_average = gaussian_mechanism(true_average, sensitivity, epsilon,
delta)

print(f"True average: {true_average}")
print(f"Private average: {private_average}")

The Gaussian Mechanism is useful when you need more flexibility in balancing privacy and accuracy,
especially for complex queries or machine learning applications.

Listing 4: Example output

True average: 50
Private average: -8.029981070071308

Medical Research

The Gaussian Mechanism is often used in medical research to protect patient privacy while allowing
meaningful analysis. Let’s simulate a study on the effectiveness of a new treatment:

import numpy as np

Simulated patient data
placebo_group = np.random.normal(loc=5, scale=1, size=1000) # Improvement

score for placebo group
treatment_group = np.random.normal(loc=7, scale=1, size=1000) #

Improvement score for treatment group

def private_t_statistic(group1, group2, epsilon, delta):
true_t_stat = (np.mean(group1) - np.mean(group2)) / np.sqrt(np.var(

group1)/len(group1) + np.var(group2)/len(group2))
sensitivity = 2 / (len(group1) + len(group2)) # Simplified

sensitivity calculation
return gaussian_mechanism(true_t_stat, sensitivity, epsilon, delta)

epsilon = 0.1
delta = 1e-5

private_t_stat = private_t_statistic(treatment_group, placebo_group,
epsilon, delta)

true_t_stat = (np.mean(treatment_group) - np.mean(placebo_group)) / np.
sqrt(np.var(treatment_group)/len(treatment_group) + np.var(
placebo_group)/len(placebo_group))

print(f"True t-statistic: {true_t_stat:.4f}")
print(f"Private t-statistic: {private_t_stat:.4f}")

Calculate utility (as relative error)
utility = 1 - abs(private_t_stat - true_t_stat) / true_t_stat
print(f"\nUtility: {utility:.2%}")

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/t6p9d-y6y38

Differential Privacy: A Primer 7

print(f"Privacy budget (epsilon) used: {epsilon}")
print(f"Delta: {delta}")

In this medical research example, we use a privacy budget (epsilon) of 0.1 and a delta of 1e‑5. The
choice of these parameters depends on the sensitivity of the medical data and the desired privacy
guarantees. The utility is calculated as the relative accuracy of the private t‑statistic compared to the
true t‑statistic.

Listing 5: Example output

True t-statistic: 43.4309
Private t-statistic: 43.3674

Utility: 99.85%
Privacy budget (epsilon) used: 0.1
Delta: 1e-05

Conclusion

As you implement these techniques, remember that the choice of privacy parameters (ε and δ) is cru‑
cial and depends on your specific use case and privacy requirements. Always consider the sensitivity
of your data and the potential risks of privacy breaches.

References

[1] A. Tiwari, “Mathematical Guarantee,” 2024, Abhishek Tiwari. doi: 10.59350/ghs12‑1vq60.
[2] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,” Foundations

and Trends in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014, doi:
10.1561/0400000042.

Abhishek Tiwari 10.59350/t6p9d-y6y38 2024‑09‑22

https://doi.org/10.59350/ghs12-1vq60
https://doi.org/10.1561/0400000042
https://doi.org/10.59350/t6p9d-y6y38

	Understanding Utility and Privacy Budget
	Types of (ε, δ)-Differential Privacy
	(ε, 0)-Differential Privacy
	(ε, δ)-Differential Privacy
	Local Differential Privacy
	Local vs. Central Differential Privacy

	Techniques
	Laplace Mechanism
	Gaussian Mechanism

	Conclusion
	References

