Distributed Aggregation Protocol
(DAP) Primer

Abhishek Tiwari

Citation: A. Tiwari, "Distributed Aggregation Protocol (DAP) Primer”,
Abhishek Tiwari, 2024. doi:10.59350/bd30z-hxs16

Published on: October 02,2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 1

In last post we covered, Privacy Preserving Measurement (PPM) and discussed how Distributed Aggre-
gation Protocol (DAP) works (see [1]). Today, we’ll explore how to implement a simplified version of
the DAP using Python with Prio3 as our Verifiable Distributed Aggregation Function (VDAF). This im-
plementation will support multiple clients, demonstrating how DAP can aggregate data from multiple
sources while maintaining privacy. Let’s dive in!

Implementing the Finite Field

First we will sets up a simple Finite Field (FF), which is crucial for the cryptographic operationsin Prio3.
AFinite Field is a set that provides a way to perform arithmetic operations with guaranteed properties
that are useful for cryptographic protocols. In Prio3, Finite Fields are used for secret sharing and for
the underlying zero-knowledge proofs. Prio3 is suitable for a wide variety of aggregation functions,
including sum, mean, standard deviation, estimation of quantiles, and linear regression.

Here we setup addition, multiplication, subtraction, and division operations on top of Finite Field.
Initialisation requires a prime number p. We’re using largest 32-bit prime (4294967291), larger the
prime better the security.

import random

class FiniteField:
def __init__(self, p):
if not self._is_prime(p):
raise ValueError("p must be prime")
self.p = p

def add(self, a, b):
return (a + b) % self.p

def sub(self, a, b):
return (a - b) % self.p

def mul(self, a, b):
return (a x b) % self.p

def div(self, a, b):
if b == 0:
raise ZeroDivisionError("Cannot divide by zero in the field")
Use Fermat's little theorem to compute the multiplicative
inverse
return self.mul(a, pow(b, self.p - 2, self.p))

def _dis_prime(self, n):
if n < 2:
return False
for i in range(2, int(n *x 0.5) + 1):

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 2

ifn%i==0:
return False
return True

Use a larger prime for better security
This 1is the largest 32-bit prime
FIELD = FiniteField(4294967291)

Example usage:
a = random.randint(0@, FIELD.p - 1)
b = random.randint(@, FIELD.p - 1)

print(f"a = {a}, b = {b}")
print(f"a + b = {FIELD.add(a, b)}")
print(f"a - b = {FIELD.sub(a, b)1}")
print(f"a x b = {FIELD.mul(a, b)1}")
print(f"a / b = {FIELD.div(a, b)}")
Helper
X1 (Aggregator)
VDAF Y1 X1
ml ——> 21 X2
X3
P1 X1 X2 X3
o
Client A Shard P1P2P3 S:z:’:«:st
X1+X2+X3
Distribute Shares \
VDAF x2 E ted Input Sh E ted A te Sh
2 Y2 ncrypted Input Shares Y1Y2Y3 Y1 nerypted Aggregate Shares Al Unsharding
22 A P1P2P3 Y2 A2 A
P1 Public Share Y3 A3
Leader Y1+Y2+Y3
) o
ClientB Shard (Aggregator) s::f:: Collector
Distribute Shares /
. Z1+22+Z3
212223
X3 P1P2P3 21
VDAF | 3 Z2
m3 *l z3 z3
P3 Helper Output
ClientC | Shard (Aggregator) Shares

Figure 1: DAP Roles - Clients generate the original measurement data, Aggregators participate in
multi-party aggregation, and Collector receives the final aggregated, privacy-preserving results.

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 3

Implementing Prio3

Thisisasimplified implementation of Prio3 which requires a FF for initialisation. We define 4 methods:
shard, prepare, aggregate, and unshard.

The shard method splits a measurement into two shares, prepare is simplified to an identity func-
tion, aggregate sums the shares, and unshard combines the final aggregate shares.

class Prio3:
def __init__(self, field):
self.field = field

def shard(self, measurement, nonce):
Ensure the measurement is in the field
measurement = measurement % self.field.p
Generate a random share
sharel = random.randint(@, self.field.p - 1)
Compute the second share such that sharel + share2 = measurement
(mod p)
share2 = self.field.sub(measurement, sharel)
return None, [sharel, share2]

def prepare(self, agg_id, agg_param, nonce, public_share, input_share)

In this simple version, preparation is just the identity
function
return input_share

def aggregate(self, agg_param, output_shares):
Sum up the output shares in the field
return sum(output_shares) % self.field.p

def unshard(self, agg_param, agg_shares, num_measurements):
Sum up the aggregate shares in the field
return sum(agg_shares) % self.field.p

vdaf = Prio3(FIELD)

Example usage:

measurement = 12345

nonce = os.urandom(16)

public_share, input_shares = vdaf.shard(measurement, nonce)

print(f"Original measurement: {measurement}'")
print(f"Shares: {input_shares[0]}, {input_shares[1]}")
print(f"Sum of shares: {(input_shares[0] + dinput_shares[1]) % FIELD.p}")

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 4

Defining DAP Structures

These classes define the main data structures used in DAP: reports, aggregation jobs, and collec-
tions.

class Report:
def __init__(self, report_id, time, public_share,
encrypted_input_shares):
self.report_id = report_id
self.time = time
self.public_share = public_share
self.encrypted_input_shares = encrypted_input_shares

class AggregationJob:
def __init__(self, job_id, agg_param, reports):
self.job_id = job_id
self.agg_param = agg_param
self.reports = reports

class Collection:
def __init__(self, report_count, interval, encrypted_agg_shares):
self.report_count = report_count
self.interval = dinterval
self.encrypted_agg_shares = encrypted_agg_shares

Implementing the Client

The Client generates reports by sharding measurements and simulates uploading them to the
Leader.

class Client:
def __init__(self, leader_url, helper_url, task_id):
self.leader_url = leader_url
self.helper_url = helper_url
self.task_id = task_id

def generate_report(self, measurement):
report_id = os.urandom(16)
timestamp = dint(time.time())
public_share, input_shares = vdaf.shard(measurement, report_-id)
encrypted_shares = input_shares
return Report(report_id, timestamp, public_share, encrypted_shares

)

def upload_report(self, report):
print(f"Uploading report {report.report_id.hex()} to Leader")
return True

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 5

Implementing the Leader

The Leader receives reports from clients, starts aggregation jobs, and processes its share of the re-
ports.

class Leader:
def __init__(self, helper_url, collector_public_key):
self.helper_url = helper_url
self.collector_public_key = collector_public_key
self.reports = {}
self.aggregation_jobs = {}

def receive_report(self, report):
self.reports[report.report_id] = report
return True

def start_aggregation_job(self, job_id, agg_param, report_ids):
job = AggregationJob(job_id, agg_param, [self.reports[rid] for rid
in report_ids])
self.aggregation_jobs[job_id] = job

output_shares = []
for report in job.reports:
input_share = report.encrypted_input_shares[0] # Leader's
share
output_share = vdaf.prepare(0, agg_param, report.report_-id,
report.public_share, input_share)
output_shares.append(output_share)

agg_share = vdaf.aggregate(agg_param, output_shares)
print(f"The aggregate share of leader 1is: {agg_share}")

return agg_share

Implementing the Helper

The Helper processes its share of the reports in each aggregation job.

class Helper:
def __init__(self, collector_public_key):
self.collector_public_key = collector_public_key

def process_aggregation_job(self, job):
output_shares = []
for report in job.reports:
input_share = report.encrypted_input_shares[1l] # Helper's
share

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 6

output_share = vdaf.prepare(l, job.agg_param, report.report_id
, report.public_share, input_share)
output_shares.append(output_share)

agg_share = vdaf.aggregate(job.agg_param, output_shares)
print(f"The aggregate share of helper 1is: {agg_share}")

return agg_share

Implementing the Collector

The Collector requests and processes the final aggregate result.

class Collector:
def __init__(self, leader_url, private_key):
self.leader_url = leader_url
self.private_key = private_key

def request_collection(self, task_id, batch_interval, leader_agg_share
, helper_agg_share):
print(f"Requesting collection for task {task_id}")

encrypted_agg_shares = [leader_agg_share, helper_agg_share]

collection = Collection(len(leader.reports), batch_interval,
encrypted_agg_shares)
return self._process_collection(collection)

def _process_collection(self, collection):
decrypted_shares = collection.encrypted_agg_shares

result = vdaf.unshard(None, decrypted_shares, collection.
report_count)
return result

Running the DAP End-to-end

Finally, we will sets up the DAP participants, creates multiple clients, generates and processes reports,
and computes the final aggregate result.

Set up the DAP participants

leader = Leader("http://helper.example", "collector_public_key")

helper = Helper("collector_public_key")

collector = Collector("http://leader.example", "collector_private_key")

Create multiple clients and generate reports
num_clients = int(input("Enter the number of clients: "))

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 7

clients = [Client("http://leader.example", "http://helper.example", "
task123") for _ in range(num_clients)]

for i, client in enumerate(clients):
measurement = dint(input(f"Enter measurement for client {i+1}: "))
report = client.generate_report(measurement)
client.upload_report(report)
leader.receive_report(report)

Leader starts an aggregation job

job_id = os.urandom(16)

agg_param = None # Not used 1in our simple Prio3 implementation

leader_agg_share = leader.start_aggregation_job(job_id, agg_param, [report
.report_id for report in leader.reports.values()])

Helper processes the aggregation job
helper_agg_share = helper.process_aggregation_job(leader.aggregation_jobs[
job_id])

Collector requests and processes the collection

batch_interval = (int(time.time()), 3600) # Last hour

result = collector.request_collection("task123", batch_interval,
leader_agg_share, helper_agg_share)

print(f"The aggregate result (sum of all measurements) dis: {result}")
print(f"The average of the measurements is: {result / num_clients}")

Here is example output from the implementation,

Enter the number of clients: 3

Enter measurement for client 1: 19

Uploading report 8dcc5a57ed3f06a29c25ef02194d01ce to Leader
Enter measurement for client 2: 11

Uploading report 09249da048604887b50d0d95022847d4 to Leader
Enter measurement for client 3: 15

Uploading report 0f7f4bc8fd3f9724e7559d9184c4c869 to Leader
The aggregate share of leader is: 2424286919

The aggregate share of helper is: 1870680417

Requesting collection for task taskl23

The aggregate result (sum of all measurements) is: 45

The average of the measurements 1is: 15.0

Conclusion

While this implementation is greatly simplified, it demonstrates the core concepts of DAP. In a produc-
tion DAP system, each step would involve complex cryptography to ensure security and privacy. The
system would also include features like batch processing of reports, minimum batch sizes to enhance
privacy, various query types for different aggregation needs, robust error handling and security mea-

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://doi.org/10.59350/bd30z-hxs16

Distributed Aggregation Protocol (DAP) Primer 8

sures, etc. For production grade, implementation please refer libprio-rs from Divvi Up, daphne from
Cloudflare, prio from original creators of Prio system and finally janus - an experimental implemen-
tation of the DAP - from Divvi Up.

References

[1] A. Tiwari, “Privacy Preserving Measurement,” 2024, Abhishek Tiwari. doi: 10.59350/fnpfz-
3v466.

Abhishek Tiwari 10.59350/bd30z-hxs16 2024-10-02

https://github.com/divviup/libprio-rs
https://github.com/cloudflare/daphne
https://docs.rs/prio/latest/prio/
https://github.com/divviup/janus
https://doi.org/10.59350/fnpfz-3v466
https://doi.org/10.59350/fnpfz-3v466
https://doi.org/10.59350/bd30z-hxs16

	Implementing the Finite Field
	Implementing Prio3
	Defining DAP Structures
	Implementing the Client
	Implementing the Leader
	Implementing the Helper
	Implementing the Collector
	Running the DAP End-to-end
	Conclusion
	References

