
Exploring Homomorphic Encryption
with Python

Abhishek Tiwari

Citation: A. Tiwari, ”Exploring Homomorphic Encryption with Python”,
Abhishek Tiwari, 2024. doi:10.59350/vr6dm-7r102

Published on: October 19, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 1

Homomorphic encryption is a powerful cryptographic technique that allows computations to be per‑
formed on encrypted data without decrypting it first. This blog post will introduce the concept of
homomorphic encryption and demonstrate implementations using Python.

What is Homomorphic Encryption?

Homomorphic encryption is a form of encryption that allows specific types of computations to be
carried out on ciphertext. The result is encrypted data that, when decrypted, matches the result of
operations performed on the plaintext.

HowDoes Homomorphic EncryptionWork?

To understand how homomorphic encryption works, let’s break it down into key concepts:

Traditional Encryption vs. Homomorphic Encryption

In traditional encryption, data is scrambled in such a way that it can only be unscrambled with the
correct key. Once encrypted, the data can’t be meaningfully manipulated without first decrypting
it.

Homomorphic encryption allows for meaningful manipulation of the encrypted data. The magic lies
in creating an encryption scheme where operations on the encrypted data correspond to operations
on the original data.

Mathematical Foundations

Homomorphic encryption schemes are built on complexmathematical structures and problems that
are believed to be computationally hard to solve. These often involve concepts from number theory
and abstract algebra.

Homomorphic Properties

The key to homomorphic encryption is that certain mathematical operations on encrypted values
correspond to operations on the plaintext values. In general:

• For addition: 𝐸(𝑎) ⊕ 𝐸(𝑏) = 𝐸(𝑎 + 𝑏)
• For multiplication: 𝐸(𝑎) ⊗ 𝐸(𝑏) = 𝐸(𝑎 ∗ 𝑏)

Where 𝐸() represents the encryption function, and ⊕ and ⊗ represent operations on encrypted val‑
ues.

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 2

Types of Homomorphic Encryption

There are three main types of homomorphic encryption:

1. Partially Homomorphic Encryption (PHE): Supports either addition or multiplication, but not
both.

2. Somewhat Homomorphic Encryption (SHE): Supports both addition and multiplication, but
only for a limited number of operations.

3. Fully Homomorphic Encryption (FHE): Supports an unlimited number of both addition andmul‑
tiplication operations.

A Simple Example

Let’s start with a simple example using the Paillier cryptosystem, which is a partially homomorphic
encryption (PHE) scheme that supports addition operations on encrypted data. We’ll use the phe
library in Python.

First, install the required library:

pip install phe

Now, let’s write some Python code to demonstrate homomorphic encryption:

Listing 1: Example using Python phe package.

from phe import paillier

def phe_example():
Generate public and private keys
public_key, private_key = paillier.generate_paillier_keypair()

Encrypt two numbers
a, b = 5, 3
encrypted_a = public_key.encrypt(a)
encrypted_b = public_key.encrypt(b)

Perform homomorphic addition
encrypted_sum = encrypted_a + encrypted_b
decrypted_sum = private_key.decrypt(encrypted_sum)

Perform homomorphic multiplication by a scalar
scalar = 2
encrypted_product = encrypted_a * scalar
decrypted_product = private_key.decrypt(encrypted_product)

print("PHE Results:")
print(f"Original numbers: {a} and {b}")

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 3

print(f"Encrypted sum: {decrypted_sum}")
print(f"Encrypted product with scalar {scalar}: {decrypted_product}")

phe_example()

This example demonstrates: key generation, Encryption of user‑input numbers, Homomorphic addi‑
tion on encrypted values, andmultiplication of one of the encrypted inputs by a scalar. Multiplication
of two encrypted values is not supported by PHE. Output from above script,

Listing 2: Example output using Python phe package.

PHE Results:
Original numbers: 5 and 3
Encrypted sum: 8
Encrypted product with scalar 2: 10

Advanced Example

Now, let’s explore a more powerful approach using Fully Homomorphic Encryption (FHE). We’ll use
the Concrete library, which is based on the TFHE (Fast Fully Homomorphic Encryption over the Torus)
scheme.

First, install the required library:

pip install concrete-python

Now, let’s create a simple example that performs basic operations on encrypted data:

Listing 3: Example using Python concrete package.

from concrete import fhe

def fhe_example():
Define a function to be executed homomorphically
@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def add_and_multiply(x, y):

return x + y, x * y

inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1), (3, 2), (6, 1),
(1, 7), (4, 5), (5, 4)]

Compile the function
circuit = add_and_multiply.compile(inputset)
circuit.keygen()
Example values
a, b = 5, 3

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 4

Perform homomorphic computation
result = circuit.encrypt_run_decrypt(a, b)

print("\nFHE Results:")
print(f"Original numbers: {a} and {b}")
print(f"Encrypted sum and product: {result}")

fhe_example()

This FHE example declares a function definition for addition and multiplication with the
fhe.compiler? decorator, then compiles for specific input set, generates the key, and finally
run operations on the encrypted user inputs. The Concrete library handles the complex task of
translating our Python function into FHE operations. This abstraction makes it much easier to work
with FHE. The encrypt_run_decrypt method handles the entire process of encryption, computation,
and decryption.

Listing 4: Example output using Python concrete package.

FHE Results:
Original numbers: 5 and 3
Encrypted sum and product: (8, 15)

Subtraction and Division

While addition and multiplication are the fundamental operations in homomorphic encryption, sub‑
traction and division can also be performed, albeit with some caveats. Let’s explore how these oper‑
ations are handled in both PHE (using the phe library) and FHE (using the concrete library).

With Paillier

In the Paillier cryptosystem, subtraction is straightforward, but division is more complex and limited.
Subtraction isbasicallyperformedbyadding thenegativeof the secondencryptednumber. Division is
not directly supported sowe use a logarithm‑based approximation, which requires decrypting values.
This approach is not secure for real‑world applications and is shownhere for demonstration purposes
only.

Listing 5: Subtraction and division using phe

from phe import paillier
import numpy as np

def phe_subtraction_and_division():
Generate public and private keys

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 5

public_key, private_key = paillier.generate_paillier_keypair()

Encrypt two numbers
a, b = 10, 3
encrypted_a = public_key.encrypt(a)
encrypted_b = public_key.encrypt(b)

Subtraction
encrypted_diff = encrypted_a - encrypted_b
decrypted_diff = private_key.decrypt(encrypted_diff)

Division (approximation using logarithms)
def encrypted_divide(encrypted_a, encrypted_b, public_key, private_key

, precision=1000):
log_a = np.log(private_key.decrypt(encrypted_a))
log_b = np.log(private_key.decrypt(encrypted_b))
encrypted_log_a = public_key.encrypt(log_a * precision)
encrypted_log_b = public_key.encrypt(log_b * precision)
encrypted_log_ratio = encrypted_log_a - encrypted_log_b
return encrypted_log_ratio, precision

encrypted_quotient, precision = encrypted_divide(encrypted_a,
encrypted_b, public_key, private_key)

decrypted_log_quotient = private_key.decrypt(encrypted_quotient)
decrypted_quotient = np.exp(decrypted_log_quotient / precision)

print("PHE Results:")
print(f"Original numbers: {a} and {b}")
print(f"Encrypted difference: {decrypted_diff}")
print(f"Encrypted approximate quotient: {decrypted_quotient:.4f}")

phe_subtraction_and_division()

Listing 6: Output for subtraction and division using phe

PHE Results:
Original numbers: 10 and 3
Encrypted difference: 7
Encrypted approximate quotient: 3.3333

With Concrete

In FHE, we can perform both subtraction and division, but with some limitations due to the integer‑
based nature of most FHE schemes. Subtraction is directly supported in FHE.

Listing 7: Subtraction using concrete

from concrete import fhe

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 6

def fhe_subtraction():
Define functions to be executed homomorphically
@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def subtract(x, y):

return x - y

Compile the functions
inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1), (3, 2), (6, 1),

(1, 7), (4, 5), (5, 4)]
circuit = subtract.compile(inputset)
circuit.keygen()

Example values
a, b = 3, 9

Perform computations
result = circuit.encrypt_run_decrypt(a, b)

print("\nFHE Results:")
print(f"Original numbers: {a} and {b}")
print(f"Encrypted difference: {result}")

fhe_subtraction()

Listing 8: Output from subtraction using concrete

FHE Results:
Original numbers: 3 and 9
Encrypted difference: -6

Division in FHE is typically integer division (floor division) due to the integer‑basednature ofmost FHE
schemes. More complex operations like floating‑point division would require additional techniques
and approximations. In following example, we are using fhe.multivariate which allows defining func‑
tions with multiple encrypted inputs, which is crucial for operations like division.

Listing 9: Floor division using concrete

from concrete import fhe
import numpy

def fhe_div():
Define functions to be executed homomorphically
@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def div(x, y):

return fhe.multivariate(lambda x, y: x // y)(x, y)

Compile the functions
w = 8

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

Exploring Homomorphic Encryption with Python 7

inputset = [(numpy.random.randint(1, 2**w), numpy.random.randint(1,
2**w)) for _ in range(100)]

circuit = div.compile(inputset)
circuit.keygen()

Example values
a, b = 13, 3

Perform computations
result = circuit.encrypt_run_decrypt(a, b)

print("\nFHE Results:")
print(f"Original numbers: {a} and {b}")
print(f"Encrypted quotient: {result}")

fhe_div()

Listing 10: Output from floor division using concrete.

FHE Results:
Original numbers: 13 and 3
Encrypted quotient: 4

Applicability

PHEare useful for specific applicationswhere only one type of operation is needed such secure voting
systemswhereonly addition is requiredorprivacy‑preservingdata aggregation. FHE is applicable to a
wide range of complex computation problems, includingmachine learning on encrypted data, secure
multi‑party computation, privacy‑preserving measurement, etc.

Conclusion

Homomorphic encryption opens up exciting possibilities for privacy‑preserving computation and
data analysis. We’ve explored two different approaches: the partially homomorphic Paillier system
and a fully homomorphic encryption system using the Concrete library.

Abhishek Tiwari 10.59350/vr6dm-7r102 2024‑10‑19

https://doi.org/10.59350/vr6dm-7r102

	What is Homomorphic Encryption?
	How Does Homomorphic Encryption Work?

	A Simple Example
	Advanced Example
	Subtraction and Division
	With Paillier
	With Concrete
	Applicability

	Conclusion

