
JWTForge: A JWT Vending Service
for Testing, Fuzzing, and Security
Research of OAuth2/OIDC
Implementations

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”JWTForge: A JWT Vending Service for Testing, Fuzzing,
and Security Research of OAuth2/OIDC Implementations”, Abhishek
Tiwari, 2025. doi:10.59350/6pdmd-3cm41

Published on: November 15, 2025

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/6pdmd-3cm41


JWTForge: A JWT Vending Service for Testing, Fuzzing, and Security Research of OAuth2/OIDC Implementations 1

Summary

JWTForge is a lightweight, open‑source JSONWeb Token (JWT) ([1]) vending service designed specifi‑
cally for developers and security researchers who need to test or surface vulnerabilities in the OAuth2
([2]) and OpenID Connect (OIDC) ([3]) implementations. With one‑click, JWTForge can be deployed
on Cloudflare Workers ([4]), and it generates realistic, customizable JWT tokens on‑demand, mak‑
ing it an essential tool for end‑to‑end testing, security auditing, and fuzzing authentication systems.
Whether you’re building a new API, conducting penetration tests, or debugging authentication flows,
or researching new attack modes, JWTForge provides the flexibility to generate any token configura‑
tion you need ‑ from standard OAuth2/OIDC claims to malformed tokens for edge‑case testing.

Statement of Need

Modern web applications depend heavily on OAuth2 ([2]) and OIDC ([3]) for their authentication
and authorization needs. However, testing these implementations thoroughly presents several
challenges. Using production identity providers (Auth0, Okta, AWS Cognito, Microsoft Entra) for
testing and security research can be risky and expensive. One can’t easily generatemalformed tokens
or test edge cases without potentially affecting real users. Developers often resort to creating mock
JWT ([1]) tokens which can be time‑consuming and often less realistic for identifying vulnerabilities.
In addition, security researchers require the ability to generate tokens with expired or future times‑
tamps, invalid signatures, missing required claims, unexpected claim types, and malicious payloads.
RFC 8725 ([5]) outlines security best practices for JWT implementations, including recommendations
for algorithm validation, claim verification, and protection against common attacks—all of which
require comprehensive testing capabilities. Finally, integration and end‑to‑end tests need consis‑
tent, reproducible tokens across different environments without depending on external identity
providers.

Currently security researchers use jwt_tool ([6]) for validating, forging, scanning and tampering
JWTs. It offers testing for known exploits in existing JWTs through brute‑forcing, algorithm confusion
attacks, and claim manipulation. Unlike jwt_tool, which focuses on exploiting and manipulating
existing JWTs through algorithm confusion attacks, secret brute‑forcing, and signature tampering,
JWTForge generates compliant OIDC/OAuth2 tokens from scratch via HTTP API. While both support
fuzzing, claim manipulation, and malformed payloads, JWTForge provides full OIDC infrastructure
(including JSON Web Key Set (JWKS) and OIDC discovery endpoints) making it ideal for integration
testing and controlled security research. Other manual testing tools such as JWT Editor ([7]), SignS‑
aboteur ([8]), and JOSEPH ([9]) are Burp Suite Extensions and allow for editing, signing, and verifying
JWT tokens and can be used to perform several well‑known attacks against JWT implementations.
JWT Cracker ([10]) is another multi‑threaded JWT brute‑force cracker written in C allowing users to

Abhishek Tiwari 10.59350/6pdmd-3cm41 2025‑11‑15

https://github.com/abhishektiwari/jwtforge
https://jwtforge.dev/
https://doi.org/10.59350/6pdmd-3cm41


JWTForge: A JWT Vending Service for Testing, Fuzzing, and Security Research of OAuth2/OIDC Implementations 2

find the secret key used for creating a JWT token. The tools are complementary i.e. one can use JWT‑
Forge to generate baseline tokens, then use thesejwt_tool,JOSEPH,JWT Editor, etc. to attack
the implementation. Although some of these tools are tailored for manual interaction, not suitable
for automated testing.

Features

JWTForge fills this gap by providing a dedicated testing service that generates valid, signed JWT ([1])
tokens with any claim combination. It also provides proper JWKS and OIDC ([3]) discovery endpoints
for realistic testing. It supports multiple key types (RSA, EC) and algorithms (RS256, ES256). It en‑
ables security testing through customizable, evenmalformed, tokens. JWTForge automatically popu‑
lates claims based on standard OIDC scopes (openid, profile, email, address, phone), gener‑
ating authentic‑looking user data via Faker ([11]). This eliminates the tedious task of crafting realistic
test personas. In addition, JWTForge allows values in header and payload of JWT tokens to be fuzzed
enabling security researchers to perform testing for known vulnerabilities and surface unknown ex‑
ploits. JWTForge performs randomized fuzzing using BLNS (Big List of Naughty Strings) ([12]), known
JWT edge cases and provides malicious values such as Injection payloads (SQL, XSS, command injec‑
tion, path traversal, etc.) as part of token payload and header.

Abhishek Tiwari 10.59350/6pdmd-3cm41 2025‑11‑15

https://doi.org/10.59350/6pdmd-3cm41


JWTForge: A JWT Vending Service for Testing, Fuzzing, and Security Research of OAuth2/OIDC Implementations 3

Figure 1: JWTForge Swagger UI for generating tokens. JWTForge provides example token templates
for various testing scenarios making it easier for users to generate JWT tokens.

We provide a one‑click deploy script enabling users to deploy their own JWTForge vending service on
Cloudflare Workers ([4]) for free. Alternatively, users can run JWTForge locally (npm run dev) to
test authentication flows without internet connectivity or external dependencies. One can also inte‑

Abhishek Tiwari 10.59350/6pdmd-3cm41 2025‑11‑15

https://doi.org/10.59350/6pdmd-3cm41


JWTForge: A JWT Vending Service for Testing, Fuzzing, and Security Research of OAuth2/OIDC Implementations 4

grate JWTForge into their CI/CD pipeline to generate consistent tokens for automated testing without
depending on external identity providers.

Availability

JWTForge is available onGitHubunderMIT Licensewhich users can deploy to CloudflareWorkers ([4])
platform for free through one‑click deployment. Alternatively, a hosted version of service is available
at jwtforge.dev. Code examples are also provided as part of repository.

References

[1] M. B. Jones, J. Bradly, and N. Sakimura, “JSON Web Token (JWT),” RFC Editor. Internet Engi‑
neering Task Force (IETF), 2015. doi: 10.17487/RFC7519.

[2] D. Hardt, “The OAuth 2.0 Authorization Framework,” EFC Editor. Internet Engineering Task
Force (IETF), 2012. doi: 10.17487/RFC6749.

[3] “OpenID Connect Core 1.0,” OpenID Foundation. 2014. Available: https://openid.net/specs/o
penid‑connect‑core‑1_0.html

[4] “Cloudflare Workers: Serverless execution environment,” Cloudflare. Available: https://work
ers.cloudflare.com/

[5] Y. Sheffer, D. Hardt, and M. B. Jones, “JSON Web Token Best Current Practices,” RFC Editor. In‑
ternet Engineering Task Force (IETF), 2020. doi: 10.17487/RFC8725.

[6] A. Tayler, jwt_tool: A toolkit for testing, tweaking and cracking JSON Web Tokens. Available:
https://github.com/ticarpi/jwt_tool

[7] JWT Editor: Burp Suite Extension for editing, signing, verifying, encrypting, and decrypting JSON
Web Tokens. Available: https://github.com/PortSwigger/jwt‑editor

[8] SignSaboteur is a Burp Suite extension for editing, signing, verifying various signed web tokens.
Available: https://github.com/d0ge/sign‑saboteur

[9] JOSEPH: JavaScript Object Signing and Encryption Pentesting Helper. Available: https://github
.com/PortSwigger/json‑web‑token‑attacker

[10] B. Rius, c‑jwt‑cracker: Multi‑threaded JWT brute‑force cracker. Available: https://github.com/b
rendan‑rius/c‑jwt‑cracker

[11] Faker: Generate massive amounts of fake data. Available: https://fakerjs.dev/
[12] M. Woolf, Big List of Naughty String. Available: https://github.com/minimaxir/big‑list‑of‑

naughty‑strings

Abhishek Tiwari 10.59350/6pdmd-3cm41 2025‑11‑15

https://github.com/abhishektiwari/jwtforge
https://jwtforge.dev/
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://doi.org/10.17487/RFC8725
https://github.com/ticarpi/jwt_tool
https://github.com/PortSwigger/jwt-editor
https://github.com/d0ge/sign-saboteur
https://github.com/PortSwigger/json-web-token-attacker
https://github.com/PortSwigger/json-web-token-attacker
https://github.com/brendan-rius/c-jwt-cracker
https://github.com/brendan-rius/c-jwt-cracker
https://fakerjs.dev/
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://doi.org/10.59350/6pdmd-3cm41

	Summary
	Statement of Need
	Features
	Availability
	References

