
Performance testing as a first‑class
citizen

Abhishek Tiwari

Citation: A. Tiwari, ”Performance testing as a first‑class citizen”, Abhishek
Tiwari, 2014. doi:10.59350/70r87-3td57

Published on: July 02, 2014

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 1

Today Iwant to talk about theperformance testing. Automatedwebapplication testing is not very rare
these days. This includes functional, unit and regression tests at minimum. A good web application
delivery approach normally includes a continuous integration setup to run automated tests. Every
time a new change is pushed to version control system, continuous integration server should run the
automated tests and depending on test results deploy latest build in a staging or QA environment.

In last few year web has changed drastically. Until very recently web application performance testing
was not considered as key requirement. Typical attitude to performance testing was reactive rather
than proactive,. But now when performance is considered as one of the key user experience require‑
ments there is a good reason to proactively test web application for performance and load. Perfor‑
mance testing can provide information about the behaviour of the web application during peak and
off‑peak conditions. According to various statistics, web application performance is affecting the bot‑
tom line of online businesses. Take a look on following interesting facts,

1. 40% of people abandon a website that takesmore than 3 seconds to load. In 2013, during peak
hours only 8% of top retailersmanaged an average download speed of three seconds or less on
Cyber Monday.

2. Theaveragewebpagehasalmostdoubled in size since2010. At sametimemobilewebbrowsing
accounted for 30% of all web traffic in 2012 and is expected to grow to 50% by 2014.

3. During Cyber Monday due to sheer weight of traffic many ecommerce websites saw perfor‑
mance drop bymore than 500% (usual 2.6 second load time to a 16 second load timewhen site
traffic peaked).

4. WhenMozilla reduced2.2 secondsoff their landingpage load time, Firefoxdownloads increased
by 15.4%. Whooping 60 million extra downloads per year. On average there was only ~1.5 sec‑
onds of page load time difference between downloaded and non‑downloaders.

We can draw few conclusions here. First page load time is a key performance indicator. Second, it is
not ok to serve a non‑optimised desktop web page to amobile device and do nothing about it. Third,
stress or load testing is business critical.

Only by using a proactive and in‑line automated performance testing approach businesses and deliv‑
ery teams can avoid performance related issues.

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

http://blog.codinghorror.com/performance-is-a-feature/
http://blog.codinghorror.com/performance-is-a-feature/
http://blog.kissmetrics.com/loading-time/
https://www.nccgroup.com/en/news-and-events/news/2013/12/92-of-top-retailers-fail-to-meet-key-web-performance-target-on-cyber-monday/
https://www.nccgroup.com/en/news-and-events/news/2013/12/92-of-top-retailers-fail-to-meet-key-web-performance-target-on-cyber-monday/
http://httparchive.org/trends.php
https://snaphop.com/2013-mobile-marketing-statistics/
http://www.marketwired.com/press-release/us-retailers-fail-to-capitalize-on-cyber-monday-profits-1859993.htm
http://www.marketwired.com/press-release/us-retailers-fail-to-capitalize-on-cyber-monday-profits-1859993.htm
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
http://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 2

Figure 1: In‑line performance testing workflow. Code commit to source repository triggers
continuous integration which runs unit tests and performance tests

Load and Stress Testing

Open source tools with support for in‑line automated performance testing is quite limited. Conven‑
tional performance testing tools or more precisely load testing tools such as Apache Benchmark(ab),
perfmeter, Siege, http_load, JMeter, Grinder, boom, etc. are either hard to integrate with delivery
pipeline or lack required features for in‑line testing.

Locust a Python based open source load testing tool is my favourite when it comes to in‑line auto‑
mated performance testing. Using Locust you can define user behaviour with Python code. You can
rush your web application with millions of simultaneous users in real‑world like environment by run‑
ning Locust distributed tests over multiple servers. Most importantly you can integrate these tests
in your continuous integration pipeline. Locust measures request/second (average, minimum, max‑

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

http://locust.io/
https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 3

imum), total request, failed request, etc. You can see these reports in dashboard included as part of
Locust.

Figure 2: Performance Testing using Locust

Lets see one example of a Locust test file. A Locust test file normally defines a number of Locust
tasks, which are normal Python functions with @task decorator. These tasks are gathered under
a TaskSet class.

Simulated user is represented by HttpLocust class. This class defines how long a simulated user
should wait between executing tasks, as well as TaskSet class that defines the execution behaviour
of this test (i.e. simulated user’s “behaviour”). @task decorator can also include optional weight
which means each task will be weighted according to it’s corresponding int value. To run the test
execute locust -f locustfile.py from command line.

locustfile.py
from locust import HttpLocust, TaskSet, task

class WebsiteTasks(TaskSet):
def on_start(self):

self.client.post("/login", {
"username": "test_user",
"password": ""

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 4

})

@task(weight=1)
def index(self):

self.client.get("/home/")

@task(weight=2)
def about(self):

self.client.get("/about/")

class WebsiteUser(HttpLocust):
task_set = WebsiteTasks
min_wait = 5000
max_wait = 15000

Page Speed Testing

Another interesting set of tools to measure and analyse the front‑end performance or load time of
web pages. My personal favourite in this category is WebPagetest which reports on page‑level and
request‑level performancemetrics such as Load Time, Fully Loaded, TTFB, Start Render, Speed Index,
etc. Additionally, you can specify test location as well as browser.

WebPagetest provides bothRESTful APIs aswell as scripting andbatchprocessing toolswhich you can
use to integrate with your continuous delivery pipeline.

GTmetrix and SpeedCurve are alternative to WebPagetest. While SpeedCurve extends the Web‑
Pagetest, GTmetrix uses Google Page Speed and Yahoo! YSlow to grade your web page performance
and provides actionable recommendations to fix these issues. GTmetrix also offers limited number
free API calls per day.

Rise of SaaS performance testing tools

One of the key problem with Locust and other similar self‑hosted tools is that you have to setup and
manage clusters of machines for distributed performance testing. If your web application or website
has a huge number of geographically diverse users, then a proper distributed performance testing
requires sending client requests frommultiple geographic regions (seemy post on CDN performance
and load testing). This may demand good upfront investment in infrastructure setup or appropriate
automation to provision on‑demand cloud infrastructure.

We can avoid all this trouble, by using a SaaS performance testing tool. There are many SaaS player
in this space: Blitz.io , Tealeaf, SpeedCurve, LoadImpact, BlazeMeter, LoadStorm, etc. to just name a
few. My favourite tool in this category is Blitz.io.

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

http://www.webpagetest.org/
http://gtmetrix.com/
http://speedcurve.com/
http://abhishek-tiwari.com/post/measuring-cdn-performance-availability-and-scalability
http://abhishek-tiwari.com/post/measuring-cdn-performance-availability-and-scalability
https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 5

Blitz.io allows you do more than just load or performance testing. You can configure Blitz.io to do
things like custom headers, authentication, cookie extraction, pattern, regions, schedule etc. Like
other SaaS offering you can run multi‑step and multi‑region tests. All this, simply by using Blitz.io
web interface.

Moreover, Blitz.io offers clients for Java, Maven, Node.js, Python, Perl, PHP and Ruby. With Blitz.io
plugins for various continuous integration servers you can run load and performance tests as CI task.
This means you can write performance tests in your favourite language or framework and integrate
with continuous integration or build process. Here is one example of a simple Blitz.io test script,

from blitz.sprint import Sprint
from blitz.rush import Rush

def callback():
print("SUCCESS")

def sprint():
options = {'url': "http://example.com"}
s = Sprint('youremail@example.com', 'aqbcdge-sjfkgurti-sjdhgft-skdiues

')
s.execute(options, callback)

def rush():
options = {'url': "http://example.com",

'pattern': { 'intervals': [{'start':10, 'end':100, 'duration'
:30}]}}

r = Rush('youremail@example.com', 'aqbcdge-sjfkgurti-sjdhgft-skdiues')
r.execute(options, callback)

sprint()

rush()

Here we are using Blitz.io Python client to run sprint and rush. Rush is Blitz.io way of generating load
in predefined pattern. Spring is a single thread runner. You can think rush as collection of sprints.

Unit Testing Number of Queries

Now a days most of web applications are built on top of a MVC framework and applications generally
use ORM for database queries and application level caching. Many unit testing or web frameworks
now support assert against number of database queries. For example in Django one can asserts
that a given function call with arguments means n number of database queries are executed .

self.assertNumQueries(7, lambda: my_function(using=7))

If youarenot sureabout exact numberof queries, youcan still do fuzzy testingwith assertNumQueries

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

http://blitz.io
https://docs.djangoproject.com/en/1.7/topics/testing/
http://lukeplant.me.uk/blog/posts/fuzzy-testing-with-assertnumqueries/
https://doi.org/10.59350/70r87-3td57

Performance testing as a first‑class citizen 6

by giving a range for number of queries. This is quite usefulwhenqueries are being cached. Following
test will ensure that the number of queries is between 5 and 8.

class FuzzyInt(int):
def __new__(cls, lowest, highest):

obj = super(FuzzyInt, cls).__new__(cls, highest)
obj.lowest = lowest
obj.highest = highest
return obj

def __eq__(self, other):
return other >= self.lowest and other <= self.highest

def __repr__(self):
return "[%d..%d]" % (self.lowest, self.highest)

class MyFuncTests(TestCase):
def test_1(self):

with self.assertNumQueries(FuzzyInt(5,8)):
my_func(some_args)

In some cases it is also possible to assert if cache is being hit or if queries are being executed. For
example, in NHibernate one can enable generate_statistics property in configuration,

<property name="generate_statistics">true</property>

and then use generated statistics for test query was cache hit or not.

// act
MappedEntity retrievedEntity = session.FindById(entity.Id);
long preCacheCount = sessionFactory.Statistics.SecondLevelCacheHitCount;
retrievedEntity = session.FindById(entity.Id);
long postCacheCount = sessionFactory.Statistics.SecondLevelCacheHitCount;
// assert
Assert.AreEqual(preCacheCount + 1, postCacheCount);

Closing thoughts

That’s all for now. Like every other type of web application testing, the purpose of performance test‑
ing is to provide a high level of confidence to business and delivery team in aweb application’s ability
‑ ability to respond quickly without compromising end‑user’s experience. More specifically applica‑
tion’s ability to handle high load conditions, respond to various patterns of traffic and client side page
load speed prior to going live. A proactive and in‑line automated performance testing is way to go
about it.

Abhishek Tiwari 10.59350/70r87-3td57 2014‑07‑02

http://stackoverflow.com/questions/2688234/count-number-of-queries-executed-by-nhibernate-in-a-unit-test
https://doi.org/10.59350/70r87-3td57

	Load and Stress Testing
	Page Speed Testing
	Rise of SaaS performance testing tools
	Unit Testing Number of Queries
	Closing thoughts

