
Policy Zones: Purpose Limitation at
Scale using Information Flow
Control

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Policy Zones: Purpose Limitation at Scale using
Information Flow Control”, Abhishek Tiwari, 2024.
doi:10.59350/dg140-43703

Published on: December 11, 2024

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 1

At the heart of privacy lies the principle of purpose limitation, dictating that data should only be pro‑
cessed for explicitly stated purposes. This principle presents a considerable challenge, especially for
organisationsoperatingat the scaleofMeta,whichhandles vast amountsof data frombillionsof users.
This article examines Policy Zones, a core component of Meta’s Privacy Aware Infrastructure (PAI), de‑
signed to address the complexities of purpose limitation at scale. This review is based onnotes froma
recent 2024 USENIX Conference on Privacy Engineering Practice and Respect(PEPR’24) presentation
by Rituraj Kirti and Diana Marsala fromMeta (see [1]).

Purpose Limitation

The principle of purpose limitation, enshrined in Article 5(1)(b) of the General Data Protection Regu‑
lation (GDPR), emphasizes that personal datamust only be collected for specified, explicit, and legiti‑
matepurposes. This principle ensures that data controllers define clear objectives for dataprocessing
at the point of collection, thereby promoting transparency and trust. Moreover, data should not be
processed in ways that are incompatible with these initial purposes.

Point Checking

Traditional approaches to purpose limitation often rely on “point checking” controls, essentially
checkpoints within the code or data access mechanisms that verify if the intended use aligns with
the stipulated purpose.

Figure 1: Limited prior arts in industry for doing purpose limitation at scale

Point checking controls has proven increasingly brittle in modern systems. While conceptually
straightforward, point checking encounters scalability issues when applied to complex, ever‑
evolving systems like Meta’s. In a recent article, we covered at Meta’s massive microservices

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504
https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 2

architecture which encompassesmore than 18,500 active services (see [2]). As codebases evolve and
grow,maintaining these point checks becomes exponentiallymore complex. Each codemodification
requires careful auditing to ensure these controls remain valid, creating a maintenance burden that
grows with the system. It’s like trying to maintain hundreds of security checkpoints, each with its
own unique ruleset that needs constant updating.

The challenge becomes even more pronounced when dealing with data access controls. Traditional
ACL mechanisms require physically separating data into distinct assets to maintain purpose‑specific
boundaries. This is akin to storing different types of sensitive documents in separate physical vaults,
each with its own access list. While this might work for smaller systems, it becomes unwieldy when
scaled up.

Furthermore, enforcing purpose limitation through access control mechanisms often requires phys‑
ical separation of data based on purpose. This separation, while effective at a smaller scale, intro‑
duces complexities and limitations when dealing with a sprawling infrastructure like Meta’s, where
data serving different purposes may be processed by shared code. This predicament necessitates a
more robust and adaptive solution, leading to the development of Policy Zones.

Data Lineage

The effectiveness of point checking can be enhanced by incorporating data flow intelligence. This
advancedapproach tracksdata throughout its journeyacross systems, creatingacomprehensivemap
of how information moves and transforms.

Think of data flow tracking like a sophisticated GPS system for your data. Using a combination of
powerful techniques ‑ static code analysis to examine howcodehandles data, strategic logging points
to monitor data movement, and post‑query processing to understand data transformations ‑ we can
build a complete picture of data’s journey through our systems.

This tracking creates what we call a “data lineage” graph ‑ essentially a family tree for your data. Like
a river system with its tributaries and distributaries, data lineage maps show how data flows from
its sources to its various destinations (sinks). Each connection in this graph represents a relation‑
ship where data moves or transforms, providing crucial context about how information propagates
through the system.

By leveraging this data lineage information, we can make smarter decisions about permissions.
Rather than applying controls blindly at individual checkpoints, we can understand the full context of
data movement and apply permissions that make sense within the broader data ecosystem. It’s the
difference between having security guards at random checkpoints versus having a comprehensive
understanding of all possible paths through a facility.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 3

However, while combining point checking with data lineage represents an improvement over point
checking alone, it still faces scaling and operational challenges. Teams must still audit numerous in‑
dividual assets, and the complexity of maintaining accurate lineage information grows exponentially
with system size.

Information flow control

Secure information flow, or information flow control (IFC), refers to mechanisms designed to ensure
that data within a system is transmitted or processed according to predefined security and privacy
policies (see [3] and [4]). It aims to prevent unauthorized dissemination or leakage of sensitive infor‑
mation while allowing permissible data exchanges to occur seamlessly. This concept is particularly
critical in systemswhere confidentiality, integrity, and regulatory compliance are paramount, such as
government, finance, and healthcare domains.

At its core, IFC enforces policies like non‑interference, ensuring that high‑security‑level data cannot
influence low‑security‑level outputs. Techniques such as static analysis, dynamic enforcement, and
hybridmethods areused tomonitor or restrict how informationpropagates through software systems
or networks. IFC models often categorise data into distinct security levels or compartments and rely
on rules derived frommodels like Bell‑LaPadula for confidentiality or Biba for integrity.

Policy Zones

Policy Zones mark a departure from traditional methods by embracing the IFC model. Instead of re‑
lying on intermittent checks or post‑hoc audits, Policy Zones operate in real time, meticulously con‑
trolling how data is accessed, processed, and transferred throughout its lifecycle. This paradigm shift
offers amore dynamic and comprehensive approach to purpose limitation, effectively addressing the
shortcomings of point checking and data lineage‑based controls.

The Mechanics of Policy Zones

The functionality of Policy Zones can be best understood by examining its layered structure. At the
foundation lies the concept of data annotation. Data assets, which could range from database en‑
tries to request parameters, are tagged withmetadata labels that encapsulate the purpose limitation
requirements associated with that data. These annotations act as identifiers, informing the system
about the permitted uses of the data.

The example of banana data, consistently referenced in the sources, serves as a useful illustration.
Imagine a requirement stipulating that banana data can be used for making smoothies and fruit bas‑
kets but not for banana bread.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 4

Figure 2: Limiting purpose of banana data. Image credits Meta.

To implement this, developers would annotate any data asset containing banana information with a
label, such as BANANA_DATA. This label effectively embeds the purpose limitation rule within the
data itself.

Figure 3: Annotation is associated with the purpose limitation requirement as a set of data flow
rules that enable systems to understand the allowed purposes for the data

The second layer involves runtime enforcement. As annotated data traverses through the system, Pol‑
icy Zones actively monitors the flow, verifying if each processing step adheres to the stipulated pur‑
pose limitations. This enforcementmechanism is deeply integratedwithin Meta’s diverse systems, in‑
cluding function‑based systems likeweb frontends andbackend services, aswell as batch‑processing
systems responsible for data warehousing and AI workloads. See following illustrations for how Pol‑

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 5

icy Zones works for the function‑based systems, while the same logic applies to the batch‑processing
systems as well.

Figure 4:When BananaRequest loads data from BananaDB, it creates a violation due to unclear
intent. After annotating BananaRequest with BANANA_DATA label, Policy Zones creates a Banana
Zone. The systemmonitors data flows, identifies violations to logB and logC, and resolves them by
annotating logB and removing logC. Once remediated, enforcement mode prevents unauthorized
data flows. Image credits Meta.

When data taggedwith the BANANA_DATA annotation is processed, Policy Zones springs into action,
evaluating if the operation aligns with the permitted uses, namely smoothie or fruit basket creation.
Any attempt to utilise this data for purposes outside this scope, such as baking banana bread, would
be flagged as a violation.

Figure 5:When BreakfastRequest’s makeBananaSmoothie() function calls makeBanana(), we face a
data flow violation as makeBanana() returns banana data. To resolve this, we create a Banana Zone
starting frommakeBananaSmoothie() that encompasses all functions in its call chain. Image credits
Meta.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 6

Zone Creation and Violation Remediation

The process of data flow monitoring by Policy Zones often involves the creation of “zones”. A zone
essentially demarcates a section of code or a data processing pipeline where specific purpose limi‑
tations are in effect. For instance, a “Banana Zone” might encompass all functions and data flows
involved in processing banana data for smoothies and fruit baskets. Policy Zones meticulously track
the movement of data within and across these zones, ensuring no data escapes the confines of its
designated purpose.

The identification of a data flow violation triggers a remediation process. The sources outline three
primary remediation options. The first involves annotating the sink asset if the data flow is deemed
safe. For instance, if banana data is used to generate an aggregate statistic about fruit consumption,
where individual banana data is no longer identifiable, the sink asset receiving this statistic can be
annotated with the BANANA_DATA label, signifying that the data flow is permissible.

The second option involves blocking data access and code execution if the intended use violates the
purpose limitation. This action effectively halts the flow of data, preventing it from beingmisused. In
the banana example, any attempt to access banana datawithin a function designed for breadmaking
would be blocked, ensuring that the data remains within the bounds of its intended purpose.

The third option, termed “reclassified flow”, is applied when the data flow does not actually utilise or
propagate the restricted data. In such cases, the data flow is annotated to indicate its harmless nature.
For instance, a function might receive input containing both banana and apple data but only utilises
the apple data. This flow, while technically receiving banana data, does not process or propagate it
further and hence can be reclassified as permissible.

Policy Zone Manager (PZM)

The scale and complexity of Meta’s infrastructure necessitates a robust management framework to
effectively implement and oversee Policy Zones. This need is addressed by the Policy Zone Manager
(PZM), a suite of UX tools designed to empower requirement owners, the individuals responsible for
translating policy requirements into technical implementations, to navigate the complexities of pur‑
pose limitation.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 7

Figure 6: Policy Zone Manager (PZM) workflow to satisfy their purpose limitation needs in existing
systems. Image credits Meta.

The workflow facilitated by PZM can be broadly categorised into four steps. The first step involves
identifying relevant assets. This stage entails pinpointing the entry points of the data in question. For
the banana data example, this could involve scrutinising product features that collect banana‑related
information, such as user preferences or purchase history. This identification process often involves
manual code inspection supplemented by automated techniques, such as machine learning‑based
classifiers, which can scan vast codebases for patterns indicating the presence of the target data.

Once the source assets are identified, the next step is to discover relevant data flows. This task is
greatly aided by data lineage tools, which provide a map of how data flows from its source to various
sinks within the system. By tracing the lineage of annotated source assets, requirement owners can
gain a comprehensive view of where the data travels and identify potential points of violation.

The third step, remediating data flow violations, involves applying the three remediation options dis‑
cussed earlier. This stage requires careful consideration of each data flow and the context of its use.
The decision to annotate, block, or reclassify must align with the overarching purpose limitation pol‑
icy.

The final step is continuously enforcing and monitoring data flows. After remediating identified vi‑
olations, Policy Zones can be switched from a “logging mode”, where violations are flagged but not
blocked, to an “enforcement mode”. In enforcement mode, Policy Zones actively prevent any unau‑
thorised data flows, ensuring continuous compliancewith the purpose limitation policy. This enforce‑
ment is further augmented by continuous monitoring mechanisms that track the effectiveness of
the implemented controls and alert administrators to any potential issues or newly emerging data
flows.

Lessons from the Trenches

Meta’s extensive experience deploying Policy Zones across its diverse systems has yielded valuable
insights into the practical considerations of building and implementing a robust purpose limitation
framework. One key takeaway is the importance of starting with a specific end‑to‑end use case. Fo‑
cusing on a concrete problem, such as limiting the use of banana data, helps refine the design and

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 8

implementation of Policy Zones in a practical context. This targeted approach allows for iterative de‑
velopment, addressing challenges and refining the system based on real‑world feedback.

Another crucial lesson is the need to streamline integration complexity. Meta’s sprawling infrastruc‑
ture comprises a multitude of systems, each with its own intricacies. To seamlessly integrate Policy
Zones across this diverse landscape, Meta invested heavily in developing reliable, computationally
efficient, andwidely applicable libraries in various programming languages. These libraries provide a
standardised interface for interactingwith Policy Zones, easing the integration burden for developers
working across different systems.

Early investment in computational and developer efficiency is another key factor contributing to the
success of Policy Zones. Initial iterations of the system suffered from overly complex annotation APIs
and computationally expensive data flow checking mechanisms, hindering developer productivity
and scalability. Meta addressed these issues by simplifying policy representation and evaluation,
leveraging language‑level features for efficient context propagation, and optimising policy annota‑
tion structures. These efforts resulted in significant improvements in both computational efficiency
and developer experience.

Meta also recognised theneed for simplified and independent annotations to scale purpose limitation
enforcement across awide range of requirements. Initial attempts to use amonolithic annotation API
to encode complex data flow rules proved unwieldy, particularly when dealing with data subject to
multiple, potentially conflicting requirements. To alleviate this issue, Meta adopted a more modular
approach, decoupling data from specific requirements and utilising separate data flow rules for dif‑
ferent purposes. This separation simplifies annotation management, improves developer workflow,
and enhances the system’s ability to handle evolving requirements.

The importance of tooling cannot be overstated, as highlighted byMeta’s experience developing PZM.
Early implementations of Policy Zones relied heavily on manual processes, placing a significant bur‑
den on developers and increasing the risk of errors. The development of PZM addressed this bottle‑
neck by providing a suite of tools that automate key tasks, such as data flow discovery and violation
remediation. These tools, coupled with built‑in rules and classifiers, guide developers through the
implementation process, ensuring consistency and reducing the potential for human error.

Conclusion

By transitioning from a static, point‑checking‑based approach to a dynamic, real‑time information
flowcontrolmodel, Metahas createda system that offers amore scalable solution. While Policy Zones
marks a significant advancement in the field,Metaacknowledges that this is just thebeginningof their
journey towards robust and sustainable privacy protection.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://doi.org/10.59350/dg140-43703


Policy Zones: Purpose Limitation at Scale using Information Flow Control 9

References

[1] R. Kirti andD.Marsala, “Approaches and Challenges to Purpose Limitation across Diverse Data
Uses,” 2024. Available: https://www.usenix.org/conference/pepr24/presentation/kirti

[2] A. Tiwari, “Microservice architecture of Meta,” 2024, Abhishek Tiwari. doi: 10.59350/7x9hc‑
t2q45.

[3] A. Sabelfeld and A. C. Myers, “Language‑based Information‑Flow Security,” IEEE Journal on Se‑
lected Areas in Communications, 2003, doi: 10.1109/JSAC.2002.806121.

[4] D. E. Denning, “A Lattice Model of Secure Information Flow,” Communications of the ACM, 1976,
doi: 10.1145/360051.360056.

Abhishek Tiwari 10.59350/dg140-43703 2024‑12‑11

https://www.usenix.org/conference/pepr24/presentation/kirti
https://doi.org/10.59350/7x9hc-t2q45
https://doi.org/10.59350/7x9hc-t2q45
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/360051.360056
https://doi.org/10.59350/dg140-43703

	Purpose Limitation
	Point Checking
	Data Lineage
	Information flow control
	Policy Zones
	The Mechanics of Policy Zones
	Zone Creation and Violation Remediation
	Policy Zone Manager (PZM)
	Lessons from the Trenches
	Conclusion
	References

