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Recent analyses of Meta and Alibaba’s production microservices architectures identified patterns of
heavy‑tail andpower lawdistributions. Thesepatternsmanifest in service scale, and request patterns,
providing a glimpse into the inherent characteristics of large‑scale distributed systems.

For details review of Meta and Alibaba’s microservices ecosystem please see [1] and [2].

Understanding Heavy‑Tail Distributions

A heavy‑tailed distribution emerges when extreme values appear with significantly higher probability
than in a normal distribution. Power law represents a special type of heavy‑tailed distribution where
the probability of an event decreases proportionally to a power of its magnitude. In these distribu‑
tions, the tail decaysmore slowly than exponential decay, resulting in a higher probability of extreme
events.

In the context ofmicroservices, heavy‑tailed distributionsmean that whilemost services exhibit “nor‑
mal” behavior in terms of scale, complexity, or resource usage, there exists a significant number of
outlier serviceswith extreme characteristics. Power lawdistributions specifically indicate that the fre‑
quency of these extreme cases decreases in a mathematically predictable way according to a power
function.

Service Complexity and Endpoint Distribution

Meta’s analysis presents a clear power law in service complexity, measured by the number of end‑
points exposed by each service (ɑ = 2.23, R² = 0.99). Thismeanswhilemost services are relatively sim‑
ple with few endpoints, there exists a small but significant number of highly complex services. Their
frontend service www, for example, exposes over 11,000 endpoints, demonstrating the extreme end
of this distribution.
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Figure 1: For Meta’s microservices ecosystem, Service complexity measured by number of unique
endpoints in a service shows a power‑law distribution. Image credits Huye et. al

This pattern suggests a natural tendency for some services to accumulate functionality over time, pos‑
sibly due to organisational dynamics (Conway’s law) or technical constraints. It may also reflect con‑
scious architectural decisions to consolidate related functionality within single services rather than
further decomposition.

Call Graph Characteristics

Microservices call graphs have many characteristics (see [3]) and size of call graphs is one of them.
Alibaba’s analysis shows heavy‑tailed distributions in call graph characteristics. While most service
call graphs are modest in size, approximately 10% contain more than 40 unique microservices, with
some graphs encompassing over 1,500 services.
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Figure 2: In Alibaba’s microservices architecture, the number of microservices in a graph follows a
Burr distribution. Image credits Luo et. al

Similarly, the number of calls within these graphs follows a heavy‑tailed distribution or Burr distribu‑
tion, with some graphs containing over 54,000 calls.

Figure 3: In Alibaba’s microservices architecture, the number of calls in a graph also follows a Burr
distribution. Image credits Luo et. al

These distributions have offer interesting learnings for system design and operation. Traditional ca‑
pacity planning approaches that assume normal distributions may severely underestimate resource
requirements for handling these extreme cases. Moreover, monitoring and debugging tools must
scale effectively across several orders of magnitude of complexity.
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Deviations

Interestingly, not all aspects of these architectures follow expected power law patterns. Meta’s anal‑
ysis found that despite there being a long tail of more complex services, their overall service depen‑
dency graph does not exhibit the power law relationships typically seen in large‑scale networks (R²
= 0.62). Similarly, the distribution of service instance counts shows no clear power law pattern (R² =
0.25).

These departures from expected behaviours suggest that architectural decisions and operational
practices can sometime override “natural” network growth trends.

Conclusion

The heavy‑tail and power law distributions in large‑scale microservices architectures highlights fun‑
damental patterns in distributed systems. These distributions naturally emerge from the intercon‑
nected nature of microservices and the varying complexity of business operations they support. An
understandingof thesedistributionoffers a simplementalmodel formicroservices systemdesignand
resource allocation.
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