
Responsive Image Distilled

Abhishek Tiwari

Citation: A. Tiwari, ”Responsive Image Distilled”, Abhishek Tiwari, 2013.
doi:10.59350/7xbst-est95

Published on: December 15, 2013

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 1

A lot has been written about current state of responsive images. Things like why we need responsive
images12, use‑cases3, requirements4 and how to choose a responsive image solution 5678 are well
documented elsewhere.

This article ismyattempt todistill signal fromnoise. In this article, Iwill discuss anatomyof responsive
image solutions and what you need to know before implementing or choosing a responsive image
solution. I will discuss the current state of the art and cover emerging standards to make working
with responsive images easier.

What is a responsive image?

A responsive image is an image that adapts in response to user agent’s environmental conditions such
as pixel‑density, orientation, max‑width, max‑height, network connectivity, device type , etc.

Environmental conditions

Environmental conditions aremainly expressedasCSSmedia features9 suchas aspect‑ratio, viewport
(height, and width), orientation, resolution, device‑pixel‑ratio, monochrome , etc. To some extent en‑
vironmental conditions are also dictated by media types. In addition, there are environmental condi‑
tions not specific to CSS such as network connectivity, browser support for different image formats
and protocols.

Adaptations

Adaptations are generally applied to a source or master image. Adaptations can include, but are not
limited to,

• changing the dimensions (in response to viewport, aspect ratio)
• cropping and/or zoom (in response to orientation, art direction)
• changing file format (in response to browser support to WebP etc.)
• changing the quality (in response to network connectivity, viewport)

1WhyWe Need Responsive Images
2WhyWe Need Responsive Images: Part Deux
3Use Cases and Requirements for Standardizing Responsive Images
4Use Cases and Requirements for Standardizing Responsive Images
5Choosing A Responsive Image Solution
6Which responsive images solution should you use?
7RESPONDINGTOTHEUNKNOWN‑TheChooseYourOwnAdventureapproach to selectinga responsive images technique.
8Infographic: Responsive Images Problems and Solutions
9Media features

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://timkadlec.com/2013/06/why-we-need-responsive-images/
http://timkadlec.com/2013/11/why-we-need-responsive-images-part-deux/
http://usecases.responsiveimages.org/
http://usecases.responsiveimages.org/
http://mobile.smashingmagazine.com/2013/07/08/choosing-a-responsive-image-solution/
http://css-tricks.com/which-responsive-images-solution-should-you-use/
http://elvery.net/demo/responsive-images/
http://www.awwwards.com/infographic-responsive-images-problems-and-solutions.html
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries#Media_features
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 2

• changing the resolution (in response to pixel ratio, resolution, print)
• changing source image (in response to art direction)
• changing to monochrome (in response to e‑ink displays, print)

CommonMisconception

A very common misconception ‑ responsive images are required solely by responsive web design
(RWD) which is a frontend problem hence it requires a frontend solution (basically a special markup
solution). First let me clarify, responsive images are not specific to RWD, they can be used with

• any type of application (mobile, web),
• any media type (screen, print),
• any type of web design (RWD, no‑RWD).

For instance, responsive images can be used to match media features and media types — what you
see on screen you get in print.

Key considerations

When implementing a responsive image solution it is worth looking at following key challenges be‑
forehand.

Detecting environmental conditions

Environmental conditions are generally detected using media queries which consist of a media type,
contain one or more expressions involving media features. A media query normally resolve to true
or false. In addition, using window.matchMedia Javascript code can react when a media query
condition is true or false or changed. This can be also used to set appropriate cookies and to send
environment hints to server‑side.

Detecting network connectivity

To detect network connectivity there is no standard solution. Client side libraries like Foresight.js1011

allows to detect the network connectivity by running image speed test. Speed tests run periodically
and results are set or updated in cookies. Please note that speed testing is just additional overhead,
basically you have to download onemore file.
10Estimates network connection speed prior to requesting an image
11Mobile first image loading with bandwidth detectionn

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://github.com/adamdbradley/foresight.js
https://github.com/teleject/hisrc
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 3

WebP support detection

Browser detection using the user agent string or property can be performed both client‑side as well
as server‑side. Please note detection using the user agent string is unreliable and it should be used
in conjunction with other details such as version number, rendering engine , etc. If the sole purpose
of the browser detection is to detect support for WebP then this can be also accomplished by reading
Accept header12. User agents with support for WebP normally advertise it in the Accept header as
image/webp13.

Accept header for Opera,

Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png
, image/webp, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1

Accept header for Chrome,

Accept: image/webp, */*;q=0.8

To serve images in WebP format, servers, proxies and CDNwill need to respect and respond Accept
header 14. For CDN, origin server must specify Vary: Accept in generated responses15.

Device detection

Device detection is mainly required by server‑side responsive image solutions. Server‑side device de‑
tection relies on a device‑detection frameworks such as WURFL16 and DeviceAtlas17. Normally these
frameworks maintain a database of device information and an API to help mapping a HTTP request
to a device profile.

Preloading

Resource preloading is implemented by most of modern browsers to make pages load faster18. In
some cases preloading brings upto 20% speed improvement19.

12Client‑Side vs Server‑Side Detection for WebP
13Deploying WebP via Accept Content Negotiation
14Deploying WebP via Accept Content Negotiation
15Deploying WebP via Accept Content Negotiation
16WURFL Device Device Description Repository
17DeviceAtlas Device data solution
18How the Browser Pre‑loader Makes Pages Load Faster
19Chrome’s preloader delivers a ~20% speed improvement!

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://www.stucox.com/blog/client-side-vs-server-side-detection-for-webp/
http://www.igvita.com/2013/05/01/deploying-webp-via-accept-content-negotiation/
http://www.igvita.com/2013/05/01/deploying-webp-via-accept-content-negotiation/
http://www.igvita.com/2013/05/01/deploying-webp-via-accept-content-negotiation/
http://wurfl.sourceforge.net/
http://www.deviceatlas.com/
http://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/
https://plus.google.com/+IlyaGrigorik/posts/8AwRUE7wqAE
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 4

Preloading explained

When parsing source markup while a browser is blocked on a script (downloading and executing), a
second lightweight lookahead preload scanner starts parsing rest of the sourcemarkup for any other
downloadable resources such as stylesheets, scripts, images, video etc for speculative preloading. A
preloader will start downloading these resources in background so that on next resourcemain parser
thread is not blocking for download. Some preparser also runs the HTML tree construction algorithm
speculatively.

Issues around preloading

Resources preloading creates interesting challenges for many responsive image solutions. Two key
challenges are,

1. Double requests per image

• Once for placeholder or default version of image using preloader and then another better
version of image using JavaScript DOMManipulation.

2. Unable to take advantage of preloader

• Preload scanner cannot speculatively execute JavaScript hence resources managed by
JavaScript will miss the benefit of preloader.

Lazyload and Postpone

Currently there is limited support for lazy (andpostpone) preloading. According toW3C Resources
Priorities Proposal twoattributeslazyloadandpostpone canbeusedsetpriorityorder

in which the user agent should or will download the resource 20. Both attributes are boolean.

In following example, user‑agent loads image only after all higher priority resources or all default pri‑
ority resources (without lazyload attribute).

In following example, User Agent must not start downloading image until either image bounding box
is already in viewport or about to come in viewport due to panning or scrolling, ~~~ .html ~~~

20lazyload and postpone attributes

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/ResourcePriorities/Overview.html#attr-lazyload
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 5

Art Direction

In terms of responsive images, art directionmeans creative control of individual images. Typically art
direction requires different aspect ratios or focal points at different responsive breakpoints21. Art di‑
rection also comes in play when orientation of device changes (landscape to portrait or vice‑versa).

Importance of Art Direction

How much weightage one should give to art direction? Importance of art direction depends on the
actual application. For instance, Art direction for a news website is quite important. Nonetheless
implementing art direction for news website will be challenging because depending on story images
can be variable in size and subject(point of interest). On the other hand art direction can be a lower
priority for an e‑commerce website where images are quite consistent in terms of size and subject.

Automation andWorkflow

Is it possible to automate the art direction? To some extent yes, mainly by cropping and zooming
an image around a focal point 22. But this may not be perfect as some time real focal point may be
completely lost.

Figure 1: Responsive Images, Art Direction and Focal Point. Image Credits Focal Point Framework.
21A breakpoint is one of a series of CSS Media Queries, which can update the styles of a page based on matching of media

features
22Focal Point Framework

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://github.com/adamdbradley/focal-point
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 6

Art direction can be part of image management workflow. Every‑time a new image comes in, focal
point or boundary is marked at very beginning which helps to automate the cropping and zooming
flawlessly.

Markup Issues

Most of responsive image solutions rely on special markups (placeholder elements). These markups
are neither strictly semantic nor valid. Plus they are verbose and hard to debug. These markups are
manipulated at run‑time to giveimg elementwith responsive image. Again thesemarkups cannot be
validate against W3Cmarkup service.

Most of special markup is used to avoid browser preloading and hence to avoid double download per
image. Once we have more influence on preloading using priority attributes we may not need these
special markups.

Caching issues

As we are talking about responsive images in context of web‑based applications, it is quite critical to
understand the impact of any kind of application or CDN caching on your responsive image solution
(and vice‑versa).

If your responsive image solution is relying on a server‑side component then any full page caching,
baked deployment or any type of template caching will need to be redefined.

Caching issues are one major reason you may want to consider a client‑side component. On side
note, client‑side solutions dependent on cookies are prone to different kind of caching related issues
because image URLs are not unique (although cookies are different).

Integration, Maintenance and Migration

Some key questions must be asked about integration, maintenance andmigration before settling on
a responsive image solution.

• Howwe can integrate legacy content or data with a responsive image solution?

– Ideally any responsive image solution should be backward compatible. This basically ap‑
plies to markup based solutions.

• Howwe can integrated responsive image solution with existing content delivery network?

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 7

– Many responsive images solutions expect cookies and query string forwarding from CDN
service to origin.

• How implemented solution will be maintained?

– Ongoing maintenance requires regularly updating solution to support new device, new
breakpoints and new environmental conditions.

• How easy it will be to migrate from one responsive image solution to another with minimum
effort?

– This basically demands that what ever responsive image solution we choose, actual im‑
plementation should be decoupled from data and content so that migration path is not
blocked.

Anatomy of a responsive image solution

Implementing a responsive image solution is typically a 2‑step process.

Step‑1 Reference responsive images in HTML/CSS

Step‑2: Generating and Serving responsive images

Following figure illustrates possible touch points for a responsive image solution. This assumes you
are running a web‑based application based on MVC or a similar design pattern.

Box labeled as green and blue are components which we can use to reference or source responsive
images in a HTML page (Step‑1). Client‑side components are blue and server‑side components are
green.

Box labeled as orange are components (image‑side) which we can use to generate and serve these
responsive images (Step‑2).

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 8

Figure 2: Anatomy of a responsive image solution. Server‑side, Client‑side and Image‑side
components.

Step‑1: Reference responsive images in HTML/CSS

Reference responsive images in CSS

Referencing responsive images in CSS is quite straightforward (at least with CSS3). Using appropriate
media queries we can always change image referenced in CSS to handle environmental conditions.

/* Responsive images for background */
body {
background: url(bg-small.jpg);

}
@media (min-width: 400px) {
body {

background: url(bg-medium.jpg);
}

}
@media (min-width: 800px) {

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 9

body {
background: url(bg-large.jpg);

}
@media (min-width: 1000px) {
body {

background: url(bg-extralarge.jpg);
}

}

Moreover, a CSS4 proposal for image-set() enables developers to specify multiple resolutions of
an image and serve responsive images accordingly23. Although experimental feature, it has been al‑
ready implemented for background images in Safari 6 and Chrome 2124.

#selector {
background-image: url(no-image-set.png);
background-image: -webkit-image-set(url(image.jpg) 1x, url(image-hires.

jpg) 2x);
/* other prefixes for -moz, -o and -ms ... */

}

Reference responsive images in HTML

This requires inserting or referencing appropriate responsive images in a HTML source or document
based on environmental conditions. Again there are two approaches to accomplish this.

Approach‑1: Special markup

Approach‑2: Image src override

Both Approach‑1 and Approach‑2 require combination of client‑side and server‑side components.

Approach‑1: Special markup

This approach requires some special markup in HTML source. Then it relies on client‑side run‑time
processing of either new DOM elements like picture25 or existing DOM elements with help of new
data-*26, src-N27 srcset28 attributes.

1. Add a set of responsive images in HTML source along with environmental condition specific to
each responsive image. Normally images are added

23Image Set Notation for CSS4
24Safari, Chrome Ship Proposed High‑Resolution Image Solution
25The picture element and srcset
26Embedding custom non‑visible data with the data‑* attributes
27Proposal for RespImg Syntax using src‑N
28The srcset attribute

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://dev.w3.org/csswg/css-images/#image-set-notation
http://www.webmonkey.com/2012/08/safari-chrome-now-support-high-resolution-images-in-css/
http://www.w3.org/TR/html-picture-element/
http://www.w3.org/html/wg/drafts/html/master/dom.html#custom-data-attribute
http://tabatkins.github.io/specs/respimg/Overview.html
http://www.w3.org/html/wg/drafts/srcset/w3c-srcset/
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 10

• either in div, span or img element with data-* attribute,
• or in picture element.

2. Add a fallback or default image in img element. If you are using a Javascript solution on client
side, then placeimg element innoscript element. Some solution put a lowquality image as
default (LQIP2930 or mobile‑first31)

3. Then ‑

• either capture the source markup before it has a chance to be parsed by the browser and
process the element to produce final markup according to the media queries or environ‑
mental conditions323334,

• or manipulate the DOM after it is parsed to get right responsive image according to the
media queries or environmental conditions35363738.

Figure 3: DOM Elements and Attributes used or proposed for Responsive Images.

Approach‑2: Image src override

Unlike previous method this approach does not require any special markup. Standard img element
is used and on run‑time depending on environmental conditions src attribute is overridden.

Run‑timesrcvalueoverrideor rewrite can takeplaceboth server‑sideaswell as client side. Of‑course
server‑side override depends on device detection and environment hints via cookies. In addition,
override can also happen via source capturing (described in next section).

29LQIP ‑ Low Quality Image Placeholders
30Imadaem— JS Daemon for Responsive Images
31Mobile‑First Images that Scale Responsively & Responsibly
32Capturing – Improving Performance of the Adaptive Web
33Capturing and Mobify.js
34Automate Your Responsive Images With Mobify.js
35Estimates network connection speed prior to requesting an image
36BBC‑News / Imager.js
37Picturefill
38responsive‑images.js

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://www.guypo.com/feo/introducing-lqip-low-quality-image-placeholders/
https://github.com/penibelst/imadaem
https://github.com/filamentgroup/Responsive-Images
https://hacks.mozilla.org/2013/03/capturing-improving-performance-of-the-adaptive-web/
http://www.mobify.com/mobifyjs/v2/docs/capturing/
http://mobile.smashingmagazine.com/2013/10/24/automate-your-responsive-images-with-mobify-js/
https://github.com/adamdbradley/foresight.js
https://github.com/BBC-News/Imager.js
https://github.com/scottjehl/picturefill
https://github.com/kvendrik/responsive-images.js
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 11

Image src as REST URL

Typically values of src attribute follow REST URL pattern where parameters reflect environmental
conditions (either directly or by proxy). For instance image quality is just proxy for environment con‑
ditions like device type, network connectivity , etc. In the src URL you can use Path parameters,
Query parameters or both.

Because each REST URL is a unique endpoint for a given set of environmental conditions, there are
no cacheability issues when used with a content delivery network (CDN).

Here is one example to serve responsive version of a master image bedroom.tif (Path parameter)
using quality and width as Query parameter.

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300" alt="
Quality 100%, Size 19 KB">

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300&qlt=50"
alt="Quality 100%, Size 10.9 KB">

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300&qlt=25"
alt="Quality 25%, Size 6.8 KB">

Following example highlight amore sophisticated use of RESTsrcURLpattern. As you can see below
this approach has ability to handle art direction flawlessly.

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300" alt="
Constrain the width only">

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300&cropN
=.5,.6,.5,.4" alt="Normalized crop">

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?crop
=200,1350,200,200" alt="Pixel crop">

<img src="http://crc.scene7.com/is/image/demo/bedroom.tif?wid=300&hei=300&
scl=02" alt="Constrained Scale">

Client‑side components

Markup Capturing

MarkupCapturingon client‑side is a uniqueway to servenot just responsive imagesbut also complete
responsive version of a website.

In this approach source markup is captured by a script way before source markup is parsed by the
browser. Then source markup is modified to inject responsive images depending on environmental
conditions detected bymedia queries. Key here is the delayed preloading. Once finished, actual pars‑
ing starts and preloading will commence.

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 12

Currently Mobify.js provides excellent support for Markup Capturing394041. Using Capturing API42 one
can

Capture and modify the DOM before any resources have loaded by delay the lookahead pre‑
parser.

Please not that Capturing technique delay preloading, but it does not prevent parallel downloads.

Image src override using Mobify.js

Using following Mobify.js script we can override or rewrite image src for responsive images.

<script>!function(a,b,c,d,e){function g(a,c,d,e){var f=b.
getElementsByTagName("script")[0];a.src=e,a.id=c,a.setAttribute("class"
,d),f.parentNode.insertBefore(a,f)}a.Mobify={points:[+new Date]};var f
=/((;)|#|&|^)mobify=(\d)/.exec(location.hash+"; "+b.cookie);if(f&&f
[3]){if(!+f[3])return}else if(!c())return;b.write('<plaintext style="
display:none">'),setTimeout(function(){var c=a.Mobify=a.Mobify||{};c.
capturing=!0;var f=b.createElement("script"),h="mobify",i=function(){
var c=new Date;c.setTime(c.getTime()+3e5),b.cookie="mobify=0; expires="
+c.toGMTString()+"; path=/",a.location=a.location.href};f.onload=
function(){if(e)if("string"==typeof e){var c=b.createElement("script");
c.onerror=i,g(c,"main-executable",h,mainUrl)}else a.Mobify.
mainExecutable=e.toString(),e()},f.onerror=i,g(f,"mobify-js",h,d)})}(
window,document,function(){a=/webkit|(firefox)[\/\s](\d+)|(opera)[\s\S
]*version[\/\s](\d+)|(trident)[\/\s](\d+)|3ds/i.exec(navigator.
userAgent);return!a||a[1]&&4>+a[2]||a[3]&&11>+a[4]||a[5]&&6>+a
[6]?!1:!0},

// path to mobify.js
"//cdn.mobify.com/mobifyjs/build/mobify-2.0.5.min.js",

// calls to APIs go here
function() {
var capturing = window.Mobify && window.Mobify.capturing || false;

if (capturing) {
Mobify.Capture.init(function(capture){

var capturedDoc = capture.capturedDoc;
// call Capturing API, get all images from source
var images = capturedDoc.querySelectorAll("img, picture");
// call Image API, resize all images and override/rewrite `src`
Mobify.ResizeImages.resize(images, {

// Pass additional option like format, device-pixel-ratio, quality
, cache-control

cacheHours: "240", // Cache in CDN for 10 days

39Capturing – Improving Performance of the Adaptive Web
40Capturing and Mobify.js
41Automate Your Responsive Images With Mobify.js
42Automate Your Responsive Images With Mobify.js

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://www.mobify.com/mobifyjs/v2/docs/
https://hacks.mozilla.org/2013/03/capturing-improving-performance-of-the-adaptive-web/
http://www.mobify.com/mobifyjs/v2/docs/capturing/
http://mobile.smashingmagazine.com/2013/10/24/automate-your-responsive-images-with-mobify-js/
http://mobile.smashingmagazine.com/2013/10/24/automate-your-responsive-images-with-mobify-js/
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 13

quality: "95", // Quality control for JPEG/WebP
});

// Render source DOM to document
capture.renderCapturedDoc();

});
}

});</script>

Above script is using two Mobify.js APIs ‑ Captureing API and Image API. Using above script following
markup:

is dynamically modified into this:

<img src="//ir0.mobify.com/320/http://localhost:3000/mobifyjs/examples/
assets/images/forest.jpg">

<img src="//ir0.mobify.com/320/http://localhost:3000/mobifyjs/examples/
assets/images/mountains.jpg">

Mobify.ResizeImages.resize is using Mobify image manipulation backend ir0.mobify.
com. Mobify.ResizeImages.resize rewrites src according to following convention,

http://ir0.mobify.com/<format><quality>/<maximum width>/<maximum height>/<
url>

http://ir0.mobify.com/c<hours>/<format><quality>/<maximum width>/<maximum
height>/<url>

You can always access Mobify imagemanipulation directly using this URL convention.

Picture src override using Mobify.js

In addition, you can use also use Capturing with an alternate and simplified version of picture
markup. With this alternate picturemarkup instead of specifying a different image for each break‑
point, in source you just specify one (or two for art direction).

<picture data-src="http://example.com/extralarge.jpg">
<source src="http://example.com/alternate_art.png" media="(min-width:

320px)" data-width="320">
<source media="(min-width: 800px)" data-width="400">
<source media="(min-width: 1000px)" data-width="500">

</picture>

is modified into this on the fly. ~~~ .html ~~~

Please note three changes in above source.

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 14

1. Capturing added missing src attribute on source element using data-src (picture ele‑
ment).

2. Capturing rewrote src for source element with help of data-width.
3. Capturing rewrote default img element by changing src attribute to data-orig-src to

avoid preload.

After Capturing changes the markup, the picture polyfill will run and select the appropriate image
based on environmental conditions (DOMManipulation).

<picture data-src="http://example.com/extralarge.jpg">
<source src="//ir0.mobify.com//webp/320/1418/http://example.com/

alternate_art.png" media="(min-width: 320px)" data-width="320">
<source media="(min-width: 800px)" data-width="400" src="//ir0.mobify.

com/webp/400/1418/http://example.com/extralarge.jpg">
<source media="(min-width: 1000px)" data-width="500" src="//ir0.mobify

.com/webp/500/1418/http://example.com/extralarge.jpg">
<img data-orig-src="http://example.com/small.jpg" src="//ir0.mobify.

com/webp/500/1418/http://example.com/extralarge.jpg">
</picture>

DOMManipulation

Currently DOM Manipulation using JavaScript onload remains most popular way to reference re‑
sponsive images in an HTML page.

In addition whenever a browser is resized or device orientation changes DOM Manipulation will up‑
date img attribute with right image.

Low Quality Image Placeholders

Low Quality Image Placeholders (LQIP)434445 or Mobile First4647 approach is used by Apple, Twitter,
Facebook, Etsy andmany others.

This happens as 2 parts process,

1. initially a low quality image or mobile version of image is downloaded on page load, then
2. depending on environmental conditions using onload event low quality image is replaced or

swapped by a high quality image.

For swapping, high quality image can be loaded using a hidden IMG tag, once download is complete
images are swapped. Thiswill prevent the lowquality image fromdisappearing before the full quality
43LQIP ‑ Low Quality Image Placeholders
44Imadaem— JS Daemon for Responsive Images
45Slimmage ‑ sane & simple responsive images
46Mobile‑First Images that Scale Responsively & Responsibly
47Mobile first image loading with bandwidth detectionn

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://www.guypo.com/feo/introducing-lqip-low-quality-image-placeholders/
https://github.com/penibelst/imadaem
https://github.com/imazen/slimmage
https://github.com/filamentgroup/Responsive-Images
https://github.com/teleject/hisrc
https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 15

image is fully downloaded.

As you can see this approach requires double download of same image but if use intelligently it can
delivery great user experience. For instance, if device ismobile or if device network connection is slow,
then we can disable part 2 of the process.

Environment Hints

Client‑side environment hints are quite important for scaling the images on‑the‑fly. Environment
hints canbepassed as cookies to a Responsive Image as Service (discussed later) to dynamically scale
images based on viewport, device‑pixel‑ratio, breakpoints , etc.

This JavaScript snippet sets viewport, breakpoint and device‑pixel‑ratio in cookie. ~~~ .html

Server-side components

Templates
Templates normally render data passed by MVC controller. Templates are

pretty much like plain HTML markup but template variables, template
inheritance and template tags make them more re-usable and modular for
our purpose.

Templates are good place to implement special markup based solutions.
Templates can also be used for server-side image `src` override based
on environment hints received from controller.

Controller
MVC Controller can be mainly used for,

* detecting the environment conditions such as (device class, user-agent,
screen size, pixel ratio etc) and pass this information to templates,
and

* in some cases to modify or format the data used for rendering of `img`
element in the templates (this can easily accomplished in template)

Currently there is very limited support to detect environment conditions
on server side. This can be accomplished using environment hints via
cookies.

Step-2: Generating and Serving responsive images
This requires to generate responsive images either on-demand or in-advance

typically using a master image, and serve them.

On-demand generation
On-demand responsive image generation requires an automated service

approach - Responsive Image as Service.

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95

Responsive Image Distilled 16

In-advance creation
In-advance responsive image creation can be done either automatically in

batch for predefined environmental conditions or manually one-by-one.
This approach is not recommended due to maintenance overhead created by
change in breakpoints like new device viewports, resolution , etc. In

addition, a manual process will not scale well.

With this approach responsive images can follow a file path and file name
convention to emulate a REST like behaviour. For instance if master
image is `static/images/mymaster.jpg` then corresponding responsive
image can be

1. `static/images/type/mymaster.jpg`
2. `static/images/mymaster-type.jpg`
3. `static/images/type/pr/mymaster-type.jpg`
4. `static/images/type/mymaster-type-pr.jpg`

Where `type` can be either `low`, `medium`, `high` (representing quality)
or `mobile`, `tablet` `desktop` (representing device). Similarly `pr`
represents pixel ratio and valid options for `pr` are `1`, `2`, `1.3` ,
etc., (depends on device, retina display or not).

Image-side components

Image Repository
Source or master images used to generate responsive images are normally

stored in a repository such as,

1. Digital Asset Management (DAM), typically part of WCM or ECommerce
system.

2. Blob storage systems like Amazon S3, Rackspace CloudFiles or Azure Blob
Storage.

Responsive Image as Service
A [Responsive Image as Service (RIaS)](http://abhishek-tiwari.com/post/

responsive-image-as-service-rias/) offers on-the-fly responsive image
generation and delivery using REST APIs or REST like image paths.

Cookies

Some RIaS requires environment hint via cookies. For instance, Sencha.io
Src[^35] uses a JavaScript measurement library to detect the browser's
screen dimensions and set them in a cookie. Once cookie is set,
subsequent API calls to Sencha.io Src can use values set in cookie.

Following `img` markup will make Sencha.io Src API call using `sw` (`
screen.width`) property which is set in a cookie scoped to the src.
sencha.io domain.

~~~ .html
<img

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

https://doi.org/10.59350/7xbst-est95


Responsive Image Distilled 17

src='http://src.sencha.io/sw-16/http://sencha.com/files/u.jpg'
alt='Client-measurement, reduced'

/>

Similarly Adaptive Images48 completely relies on environment hints via cookies. On client‑side follow‑
ing JavaScript code will set cookies required by Adaptive Images server‑side.

<script>document.cookie='resolution='+Math.max(screen.width,screen.height)
+("devicePixelRatio" in window ? ","+devicePixelRatio : ",1")+'; path=/
';</script>

When an image /static/example.jpg is requested to Adaptive Images service, server side will
check for cookies describing viewport and device‑pixel‑ratio. Using these values server will generate
responsive image and return.

Header

To serve WebP using Accept header received either from downstream CDN server or directly from
user agent, RIaS sever must be configured properly49.

Content Delivery Network

Although optional, a content delivery network can be used to speed up the delivery by caching the
responsive images.

Some CDN can performWebP content negotiations using Accept header, but this depends on fetch‑
ing of WebP version from proxy RIaS server50.

WorthWatching

Responsive image container

Proposed Responsive image container will store image data in layered format5152.

• lower layer will represent the lowest resolution image, and layers above it will represent a spe‑
cific resolution and contain required data diff.

• in addition lower layer will contain focal point and using layers above it one can construct the
art‑direction.

48Adaptive Images
49Deploying WebP via Accept Content Negotiation
50Deploying WebP via Accept Content Negotiation
51Responsive Image Container
52Responsive Image Container Prototype

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://adaptive-images.com
http://www.igvita.com/2013/05/01/deploying-webp-via-accept-content-negotiation/
http://www.igvita.com/2013/05/01/deploying-webp-via-accept-content-negotiation/
http://blog.yoav.ws/2013/09/Responsive-Image-Container
https://github.com/yoavweiss/Responsive-Image-Container
https://doi.org/10.59350/7xbst-est95


Responsive Image Distilled 18

Container will support multiple image formats using decoding of master file format (ISO base media
file format or something similar).

In addition, it has been demonstrated that Progressive JPEG can be used to delivery responsive im‑
ages when resolution switching is required53.

Content negotiation headers

Server‑side content negotiation is one really promising area. One example is Accept header for
WebP which is already supported by selected browsers (Chrome and Opera) and CDN services (Aka‑
mai, MaxCDN).

There are few more header proposals in progress. These headers will require implementation from
both browser vendors, CDN and proxy services.

HTTP client Hints

LikeAccept header for WebP, proposed HTTP client hints54 allows client to advertise its device pixel
ratio (DPR) via CH-DPR header, and the resource display width via CH-RW (in DIPs) of the requested
resource.

GET /img.jpg HTTP/1.1
User-Agent: Awesome Browser
Accept: image/webp, image/jpg
CH-DPR: 2.0
CH-RW: 160

Again servers, proxies and CDN will need to use these headers to serve appropriate assets.

Responsive image protocol

Another interesting proposal to implement responsive image using a new HTTP header Image-
Resolution-Patch55. Basic idea is to allow user agent to download a low‑resolution version first
then allow to download and apply high‑resolution patch sequentially depending on environmental
conditions.

53Responsive image format: Progressive JPEG for the resolution‑switching
54HTTP Client‑Hints Draft Proposal
55Responsive Image Protocol proposal

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://blog.yoav.ws/2012/05/Responsive-image-format
https://github.com/igrigorik/http-client-hints
http://fremycompany.com/BG/2012/Responsive-Image-Protocol-proposal-908/
https://doi.org/10.59350/7xbst-est95


Responsive Image Distilled 19

Final words

In this article I discussed anatomy of responsive image solutions. Let’s face it — implementing a re‑
sponsive imagesolution ishardandproblematic56. Although I amquite convinced thatnewpicture
element is going to improve the situation but by no mean it will solve all our problems5758. I think
browser vendors canmake preload (and prefetch) more smarter by implementing resource priorities
. Also content negations headers are definitely game changer as they are future proof and backward
compatible. Last but not least success of any responsive image solution will require a mature RIaS
because batch generation of responsive images for all predefined environmental conditions is not
realistic.

56Responsive images: what’s the problem, and how do we fix it?
57Responsive Image Protocol proposal
58Why Responsive Images Is So Hard

Abhishek Tiwari 10.59350/7xbst-est95 2013‑12‑15

http://dev.opera.com/articles/view/responsive-images-problem/
http://fremycompany.com/BG/2012/Responsive-Image-Protocol-proposal-908/
http://css-tricks.com/responsive-images-hard/
https://doi.org/10.59350/7xbst-est95

	What is a responsive image?
	Environmental conditions
	Adaptations

	Common Misconception
	Key considerations
	Detecting environmental conditions
	Detecting network connectivity
	WebP support detection
	Device detection
	Preloading
	Preloading explained
	Issues around preloading
	Lazyload and Postpone

	Art Direction
	Importance of Art Direction
	Automation and Workflow

	Markup Issues
	Caching issues
	Integration, Maintenance and Migration

	Anatomy of a responsive image solution
	Step-1: Reference responsive images in HTML/CSS
	Reference responsive images in CSS
	Reference responsive images in HTML


	Worth Watching
	Responsive image container
	Content negotiation headers
	HTTP client Hints

	Responsive image protocol

	Final words

