
Scala for the Python Geeks

Abhishek Tiwari

Citation: A. Tiwari, ”Scala for the Python Geeks”, Abhishek Tiwari, 2011.
doi:10.59350/hhdc8-axf19

Published on: September 16, 2011

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/hhdc8-axf19

Scala for the Python Geeks 1

Scala is a JVM languages designed by Martin Odersky in early 2001 and it brings features of object‑
oriented programming and functional programming together. Scala is competing again several new
JVM languages including but not limited to Groovy, Clojure, JRuby and Jython.

Scala resembles Python (and Ruby) in many ways and as a Pythonist I found it real easy to switch on
Scala. The purpose of this tutorial series is to give Python geeks an idea about the similarities and
differences between Scala and Python world.

##Getting Started Before we start this tutorial, below are some suggested reading for both Scala as
well Python. I will be pulling lot of ideas and examples from these sources.

• Programming in Scala.Written by none other than Martin Odersky ‑ the creator of Scala
• Scala for the Impatient. You can download a free PDF version here. A set of exercises at end of
each chapter.

• Scala in Depth
• Beginning Scala. This book is a useful complement to Programming in Scala.
• Programming Python. First class reference text on Python
• Python Pocket Reference. A Swiss Army knife for Python developers.

Installation

You can download latest stable release and installers for Scala here. One of the key feature of Scala
is Actors. In Scala Actors provide a concurrency model which is lot a easier than Java’s native concur‑
rency model. To add this creators of Scala has developed Akka a framework which simplifies writing
concurrent, scalable and highly available applications through Actors. To get the most out of Scala’s
scalability features, use of Akka is highly desirable. Although Akka can be installed separately from
Scala, it is better to use a simple, pre‑integrated stack together with Akka provided by Typesafe.

After installation make sure that the scala/bin directory is on the PATH (User environment are set up
correctly with SCALA_HOME and bin PATH variables).

Scala Interactive Interpreter (REPL)

Scala Interpreter (oftencalledaREPL forRead‑Evaluate‑Print Loop) isPythonequivalentof Interactive
Mode. To get started type scala in your terminal.

$ scala
Picked up _JAVA_OPTIONS: -Xmx1024m
Welcome to Scala version 2.9.0.1 (Java HotSpot(TM) 64-Bit Server VM, Java

1.6.0_26).
Type in expressions to have them evaluated.
Type :help for more information.

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://www.artima.com/shop/programming_in_scala_2ed
http://horstmann.com/scala/
http://typesafe.com/resources/scala-for-the-impatient
http://www.manning.com/suereth/
http://www.apress.com/9781430219897/
http://shop.oreilly.com/product/9780596158118.do
http://shop.oreilly.com/product/9780596158095.do
http://www.scala-lang.org/downloads
http://akka.io/
http://typesafe.com/stack/download
http://typesafe.com/
https://doi.org/10.59350/hhdc8-axf19

Scala for the Python Geeks 2

scala>

Initially you will find that Scala REPL takes bit longer load time than expected due to enormous start‑
up cost for the REPL. According to this Stackoverflow thread using REPL gradually causes JVM byte‑
code to be converted to native code, after which it’s very fast.

Now let’s check the:helponREPL~~~scala> :helpAll commandscanbeabbreviated, e.g. :he instead
of :help. Those marked with a * have more detailed help, e.g. :help imports.

:cp add a jar or directory to the classpath :help [command] print this summary or command‑specific
help :history [num] show the history (optional num is commands to show) :h? search the history :im‑
ports [name name …] show import history, identifying sources of names :implicits [‑v] show the im‑
plicits in scope :javap <path|class> disassemble a file or class name :keybindings show how ctrl‑[A‑Z]
and other keys are bound :load load and interpret a Scala file :paste enter pastemode: all input up to
ctrl‑D compiled together :power enable power user mode :quit exit the interpreter :replay reset exe‑
cution and replay all previous commands :sh run a shell command (result is implicitly => List[String])
:silent disable/enable automatic printing of results :type display the type of an expression without
evaluating it ~~~

You can use Scala REPL as a calculator prettymuch like Python interactivemode, ~~~ scala> 2+2 res0:
Int = 4 scala> 2*2 res1: Int = 4 ~~~

>>> 2+2
4
>>> 2*2
4

The key difference is res or automatically generated result variable names such as res0, res1
when a variable name is not provided. REPL interpreter also displays the type of the result in this
case Int via Scala’s built‑in type inference mechanism. In Scala, often it is not necessary to specify
the type of a variable, in fact the compiler can infer the type from the initialization expression of the
variable.

For the record the Scala is statically typed language with type inference and it is completely orthogo‑
nal to dynamic languages like Python or Ruby. Although type inferencemay confuse some of us from
PythonorRubyworldwhich is actually doneby the compiler (seemoredetails on static vsdynamic).

Scala REPL Tab Completion

Scala REPL provides tab completion or suggestion which can be used for package and class comple‑
tion as well as member completion (suggesting static and instance methods for a Scala object). For

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

http://stackoverflow.com/questions/2471947/is-there-an-easy-way-to-get-the-scala-repl-to-reload-a-class-or-package
http://en.wikipedia.org/wiki/Type_system#Static_and_dynamic_type_checking_in_practice
https://doi.org/10.59350/hhdc8-axf19

Scala for the Python Geeks 3

member completion use object. and tab. ~~~ scala> import scala.co collection compat concur‑
rent

scala> var t = 2+2 t: Int = 4

scala> t. % & * + ‑
/ > >= » »>
^ asInstanceOf isInstanceOf toByte toChar
toDouble toFloat toInt toLong toShort
toString unary_+ unary_‑ unary_~ |

scala> t.to toByte toChar toDouble toFloat toInt toLong toShort
toString
~~~

Python does not provide an out of the box tab completion solution like Scala but you can use either
rlcompletermodule or use iPython

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> a = "astring"
>>> a.
a.__add__( a.decode(
a.__class__( a.encode(
a.__contains__( a.endswith(
a.__delattr__( a.expandtabs(
a.__doc__ a.find(
a.__eq__( a.format(

Scala REPL Power Mode

Scala REPL power mode can be invoked by :power command.

scala> :power
** Power User mode enabled - BEEP BOOP WHIR **
** scala.tools.nsc._ has been imported **
** global._ and definitions._ also imported **
** New vals! Try repl, intp, global, power **
** New cmds! :help to discover them **
** New defs! Type power.<tab> to reveal **

First of all, you can see above that power mode adds new variables (val type), command options and
defintions. For instance if you type :help before and after power mode activation you can see fol‑
lowing additional cammand

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

http://ipython.scipy.org/
https://doi.org/10.59350/hhdc8-axf19


Scala for the Python Geeks 4

:dump displays a view of the interpreter's internal
state

:phase <phase> set the implicit phase for power commands
:wrap <method> * name of method to wrap around each repl line

:wrap is more like a Python decorator. You can define a custommethod to wrap around each REPL
line. For instance, let say you want to profile each line on REPL by calculating it’s run time. Define a
custommethod which takes the code body and execute it and return the run‑time (credits).

def timed[T](body: => T): T = {
val start = System.nanoTime
try body
finally println((System.nanoTime - start) + " nanos elapsed.")

}

On REPL,

scala> def timed[T](body: => T): T = {
|
| val start = System.nanoTime
|
| try body
|
| finally println((System.nanoTime - start) + " nanos elapsed.")
|
| }

timed: [T](body: => T)T
scala> :wrap timed
Set wrapper to 'timed'

scala> (1 to 10000000).sum
755108174 nanos elapsed.
res2: Int = -2004260032

scala> (1 to 20000).sum
1410095 nanos elapsed.
res3: Int = 200010000

scala> 1733811000 / 3916300
602312 nanos elapsed.
res4: Int = 442

Scala Script Mode vs Compile Mode

Rather than typing on REPL you can also write your Scala code on a file, either in script mode (Scala
Script) or compile mode (Scala Program). In script mode Scala files do not have an explicit main

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

http://days2011.scala-lang.org/sites/days2011/files/39.%20Powermode.pdf
https://doi.org/10.59350/hhdc8-axf19


Scala for the Python Geeks 5

method. In both modes Scala files have an extension .scala. You can also run a Scala file as a
shell or bat script if appropriate header is added, for instance in Unix script.sh

#!/bin/sh
exec scala "$0" "$@"
!#
println("Hello world "+ args(0) +"!")

and forWindowsscript.bat ~~~ ::#! echo? off call scala%0%*goto :eof ::!# println(“Helloworld”+
args(0) +“!”) ~~~

Note $0 or %0 is set to the name of the file, $@ or %* is set to the positional parameters.

Loading & Running Scala Script in REPL

Loading a Scala script in REPL is quite straight foreword. Create a Scala script file test.scala and
add some code to it ~~~ //test.scala println(“Hell world”*3) ~~~ On REPL, :load script.scala
arg1 arg2 ~~~ scala> :load test.scala Loading test.scala…Hell world Hell world Hell world ~~~

Again it is quite similar toexecfile("script.py arg1 arg2") in Python interactive shell. ~~~
»> execfile(“test.py”) Hello world Hello world Hello world ~~~

Alternatively, you can open the Python interpreter by typing python -i script.py on your ter‑
minal. It will executescript.py and then drop you into interactivemodewith the environment left
behind byscript.py. Moreover you can also add#!/usr/bin/python -i directly into start of
your Python scripts.

Running Scala Script on Terminal

You can run you Scala script as scala script.scala arg1 arg2 ~~~ $scala test.scala Hell
world Hell world Hell world ~~~ Note command‑line arguments can be accessed in your script with
the argv variable which is an Array[String]. ~~~ //test.scala println(“Hello world”+argv(0)) ~~~

$scala test.scala Abhishek
Hello world Abhishek

InPythonyoucanaccess the command‑lineargumentsusingsys.argvwhichalso includesnameof
Python script file as first argument. ~~~ import sys print “Hello world” + sys.argv[1] print “File name:”
+ sys.argv[0] ~~~

$ python test.py Abhishek
Hello world Abhishek
File name:test.py

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

https://doi.org/10.59350/hhdc8-axf19


Scala for the Python Geeks 6

Compile and Execute Scala Program

Use scalac command to compiles one (or more) Scala program file(s) to generates Java bytecode
which can be executed on any standard JVM. To compile using scalac source filesmust contain one
or more class, trait, or object definitions.

$scalac File1.scala File2.scala

Note that complilation using scalac is very slow due to overhead related to enormous start‑up cost
every time you run compiler. To speed up this, standard Scala distribution ships with a compiler dae‑
mon called fsc (for fast Scala compiler) which you can run like,

$fsc File1.scala File2.scala

When you comiple with fsc first time it will take longer due to delay in starting the daemon but after
that the compliation will be quite fast as daemon will already be running in background.

To compile and execute a Scala program, youmust supply the name of a standalone singleton object
with a main method that takes one parameter, an Array[String]. Singleton object with a main
method acts as the entry point.

//HelloWorld.scala
object HelloWorld {

def main(args: Array[String]): Unit = {
println("Hello world "+args(0))

}
}

Obvisouly you can simply run it as a script,

$scala HelloWorld.scala Abhishek

or better compile and execute it,

$scalac HelloWorld.scala
$scala HelloWorld Abhishek
Hello world Abhishek

CompilingHelloWorld.scalawill generateHelloWorld.class file which can be executed us‑
ingscala command. Note that bytecode fileHelloWorld.class corresponds to object defintion
of same name. As best practise you should always use same source file name as object name.

Corresponding shell script versionHelloWorld.sh for Unix which you can run from terminal as./
HelloWorld.sh Abhishek if script has executable permission. ~~~ #!/bin/sh exec scala “0""@”
!# object HelloWorld { def main(args: Array[String]): Unit = { println(“Hello world”+args(0)) } } Hel‑
loWorld.main(args) ~~~

Abhishek Tiwari 10.59350/hhdc8-axf19 2011‑09‑16

https://doi.org/10.59350/hhdc8-axf19

	Installation
	Scala Interactive Interpreter (REPL)
	Scala REPL Tab Completion
	Scala REPL Power Mode

	Scala Script Mode vs Compile Mode
	Loading & Running Scala Script in REPL
	Running Scala Script on Terminal

	Compile and Execute Scala Program

