
Traditional Ways To Solve Scalability
ProblemsWith RDBMS

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”Traditional Ways To Solve Scalability Problems With
RDBMS”, Abhishek Tiwari, 2012. doi:10.59350/yq9sh-56257

Published on: October 05, 2012

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/yq9sh-56257


Traditional Ways To Solve Scalability Problems With RDBMS 1

Notes plus thoughts from my recent read Cassandra: The Definitive Guide. Common ways to solve
scalability bottleneck with relational databases,

ThrowMore/better Hardware (memory And Cpu)

• Vertical scaling
• Faster disks (SSD vs RAID)

Move To A Database Cluster

• With master‑slave configuration:

– Master is now single point of failure.
– Update slave as master during failure.
– Separate read fromwrites ‑ dedicated slaves for reads.
– Load balance the read requests.
– Replication latency and delay.
– Master and slaves out of sync.

• With multi‑master configuration:

– Synchronous replication:

* Each transaction to be applied to all the master.

* Performance issues and blocking if one master goes down.

– Asynchronous replication:

* Each transaction is buffered in master (“deferred transaction queue”) and then
pushed periodically to other masters.

* Higher performance but consistency issues.

* Avoid conflicts‑duplicate keys, auto‑increments.

* Row based replication to avoid data drift.

* Throw additional boxes in a database cluster.

* Data replication and consistency issues during regular usage due to latency or during
failover scenarios.

Work On Improving Indexes And Query Optimisation

• Reducing and reorganising joins.
• Removing resource‑intensive features.

Abhishek Tiwari 10.59350/yq9sh-56257 2012‑10‑05

https://doi.org/10.59350/yq9sh-56257


Traditional Ways To Solve Scalability Problems With RDBMS 2

Employ Caching Layer

• Consistency issues due to gap in updates in the cache and updates in the database.
• Write though vs write back

– Write through‑ data is written both cache and database. The total write time is the time to
write to the cache plus the time to write the database.

– Write back ‑ nowrite time delay. Data is initially written to the cache, only when the cache
is full or required is the data written to the database. Possible to lose data if cache fails.

Do Some De‑normalization

• Duplication of data.
• Deviation from philosophy of 5 normal forms and basic principals of relations data modelling.

Introduce Sharding Into Your Relational Architecture

• Sharding can be simply defined as a “shared‑nothing” partitioning in which there is no cen‑
tralised or shared state.

• Common shard structures:

– Feature‑based shard or functional segmentation
– Key‑based sharding
– Lookup table

• Shared‑nothing architecture has no central controller and no notion of master/slave. All nodes
are same.

Abhishek Tiwari 10.59350/yq9sh-56257 2012‑10‑05

https://doi.org/10.59350/yq9sh-56257

	Throw More/better Hardware (memory And Cpu)
	Move To A Database Cluster
	Work On Improving Indexes And Query Optimisation
	Employ Caching Layer
	Do Some De-normalization
	Introduce Sharding Into Your Relational Architecture

