Web Components: Web’s Polymer
Future

Abhishek Tiwari

Citation: A. Tiwari, "Web Components: Web’s Polymer Future”, Abhishek
Tiwari, 2014. doi:10.59350/7y4jy—-n5e33

Published on: June 11,2014

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 1

Recently | have been playing with Web Components (WC). W3C specification drafts describe Web Com-
ponents as the component model for the web !. This component model consists of five new con-
structs: HTML Templates, Decorators, Custom Elements, Shadow DOM and HTML Imports. These con-
structs will be used as new primitives in the browser. This includes new standard and custom reusable
HTML elements. So for instance a google—analytics Web Component element,

<google-analytics domain="example.com" code="UA-XXXXX-Y"></google-
analytics>

is equivalent to following but a lot more cleaner, composable and standardised.

<!-- Google Analytics -->

<script>

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]]||function

(i[ffﬁ;=i[r].q||[]).push(arguments)},i[r].1=l*new Date() ;a=s.createElement

m=sF;géElementsByTagName(o)[0];a.asynczl;a.src:g;m.parentNode.insertBefore

})(é;kggw,document,'script','//www.google—analytics.com/analytics.js','ga'
)3

ga('create', 'UA-XXXXXX-Y', 'example.com');
ga('send', 'pageview');

</script>
<!-- End Google Analytics -->

Comingback to these new constructs, each of these can be used individually as well asin combination.
By combining these constructs one can create reusable and composable components. These compo-
nents will allow developers to create very large applications in a declarative way without dealing with
complexity and monolithicity of current approaches.

Why

So what is wrong with current constructs and why we need these Web Components?

Fragmented and Blotted

Although there has been a lot of innovation on both CSS and JavaScript side , current ecosystem
of constructs like frameworks, plugins, widgets, templates, etc. is highly fragmented and either not
reusable or lack standardisation. This has resulted into complex, non-modular and monolithic web

1W3C Introduction to Web Components

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

http://www.w3.org/TR/components-intro/
https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 2

applications. In some cases blotted with plugins and libraries doing very tiny bits on a web page but
loaded on each and every web page. More often, developers are trying to solve the problems us-
ing frameworks and plugins which should be ideally tackled by web community (W3C) with help of
browser vendors.

Encapsulation

Moreover, current ecosystem lacks proper encapsulation which means it is always possible styles and
script might break in unpredictable way. As an example, when a page includes an external widget,
DOM tree inside widget is visible to page’s script and style. Hence when page has id or class name
overlap with widget then page style or script can be accidentally applied to widget DOM tree as well.
Currently iFrames offer most basic way to encapsulate external HTML but they have serious issues
such as security threats, SEO leaks and poor web tracking.

New primitives
HTML Templates

+ Act as scaffold or blueprint

+ Inert chunks of markup which can be activated or intended to use later

+ Parsed by parser by not rendered (script not executed, stylesheets/images not loaded, media
not played)

+ Hidden from document, after activation a template clone is populated and appended to docu-
ment

« template element hasa property content which holds the content of the template in a doc-
ument fragment

+ Get the template element > Access the template content document fragment and clone it >
Populate content to clone > Append populated clone to document

<template id="commentTemplate">

<div>
 <!-- Populated on run time -->
<div class="comment-text"></div> <!-- Populated on run time —->
</div>
</template>
<script>

function addComment(imageUrl, text) {
// Get the template element
var t = document.querySelector ("#commentTemplate");
// Access the template content document fragment and clone it
var comment = t.content.cloneNode(true);

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 3

// Populate content to clone
comment.querySelector('img').src = imageUrl;
comment.querySelector ('.comment-text').textContent = text;
// Append populated clone to document
document.body.appendChild(comment) ;

}

</script>

Decorators

+ Enhances or overrides the presentation of an existing element
« Controlled by CSS
« Still on drawing board no specification yet

Custom Elements

+ Create new HTML elements - expand HTML’s existing vocabulary
+ Extend existing DOM objects with new imperative APIs

We can create custom HTML element for concepts like cars, movies, books etc. Following example
declares custom HTML element car and gallery and composes them (including a element) to pro-
duce a markup which conceals the complexity of displaying details about cars.
<car make="Toyota" model="Camry" year="2013">
<gallery type ="exterior" ></gallery>
<gallery type ="dinterior" ></gallery>

Learn more
</car>

Shadow DOM

+ Act as mortar or glue
« DOM & Style encapsulation boundaries for more reliable composition of userinterface elements
« Similar mechanics browsers vendors have been using to implement their internal Ul

In following example, there are two .outer styles. Due to encapsulation boundary, style in main
page can not access the Shadow DOM elements and hence can not style them. Only . outer declared
as part of Shadow DOM will apply. Result will display “Hi! My name is Not Bob” in red colour.

2Web Components Shift

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

http://www.webcomponentsshift.com/
https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 4

<div 1id="nameTag">Bob</div> <!-- Populated on run time -->
<template id="nameTagTemplate"> <!-- This is template -->
<style>
.outer {
color: red; /x This style 1is part of Shadow DOM Tree, Applied on Shadow
DOM x/
}
</style>

<div class="outer'">
<div class="boilerplate">
Hi! My name is
</div>
<div class="name'">
Not Bob
</div>
</div>
</template>

<script>

// Create Shadow Root

var shadow = document.querySelector('#nameTag').createShadowRoot();
// Get Template Content

var template = document.querySelector ('#nameTagTemplate');

// Clone Template Content and Populate the node

shadow. appendChild(template.content.cloneNode());

</script>

<style>
.outer {
color: black; /* This style is part of Main Page or DOM Tree, Not
applied on Shadow DOM */

}
</style>

HTML Imports

+ Load element definitions and other resources declaratively
+ Defines how templates, decorators and custom elements are packaged and loaded as a resource
+ Allows sharing and reuse of Web Components

<!DOCTYPE html>
<html>
<head>
<link rel="1import" href="x-foo.html"> <!-- Import x-foo.html -->
</head>
<body>
<x-foo></x-foo> <!-- Element definition is in x-foo.html -->
</body>

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 5

</html>

<!-- Content of x-foo.html -->
<element name="x-foo'">

<h1>I am X FOO0</h1>
</element>

() @& @

Figure 1: Polymer web is future but using Polyfills like X-Tags and Polymer we can start
implementing some of the Web Components now

Current Status

Following describes the current status of Web Components 3. Except the Decorators, all other Web
Component types have a working specification 4°¢7,

3Are We Componentized Yet?
4Shadow DOM Spec

SHTML Imports Spec

SHTML Templates Spec
"Custom Elements Spec

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

http://jonrimmer.github.io/are-we-componentized-yet/
http://www.w3.org/TR/shadow-dom/
http://www.w3.org/TR/html-imports/
http://www.w3.org/TR/html-templates/
http://www.w3.org/TR/custom-elements/
https://doi.org/10.59350/7y4jy-n5e33

Web Components: Web’s Polymer Future 6

Documentation Implementation

Explained Specced Polyfill Chrome / Firefox Safari IE
Opera

Templates -----

HTML Imports

cosom Semens -----

3

Decorators

Figure 2: Current Status of Web Components Specification, Polyfills and Browser Implementation

In terms of implementation,

« two polyfills of web components X-Tags® and Polymer® can support HTML Templates, HTML Im-
ports, Custom Elements and Shadow DOM.

+ browser are progressing well with working specification. Chrome, Opera and Firefox are already
shipping stable implementations. For instance, HTML Templates are now supported by latest
version of Chrome, Opera and Firefox'°.

Closing thoughts

Web Components are already here and they are gone change the way we build apps. With new con-
structs and modern tooling around them we can rapidly build complex apps with ease. We will cover
each of these constructs in detail in upcoming posts.

8X-Tags
®Polymer - Building blocks for the web
©Template Compatibility

Abhishek Tiwari 10.59350/7y4jy-n5e33 2014-06-11

http://x-tags.org/
http://www.polymer-project.org/
http://caniuse.com/#feat=template
https://doi.org/10.59350/7y4jy-n5e33

	Why
	Fragmented and Blotted
	Encapsulation

	New primitives
	HTML Templates
	Decorators
	Custom Elements
	Shadow DOM
	HTML Imports

	Current Status
	Closing thoughts

