
What I’ve learned so far about React

Abhishek Tiwari
 

 

Citation: A. Tiwari, ”What I’ve learned so far about React”, Abhishek Tiwari,
2017. doi:10.59350/a4vzh-dhy95

Published on: September 25, 2017

https://orcid.org/0000-0003-2222-2395
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 1

Over theweekend, I took a shot to build something new in React. React is a JavaScript library to build
user interfaces. React was open sourced by Facebook and since then it has gained popularity over
other frontend frameworks such as Angular, Vue, etc. To start, I have a good experience in JavaScript
and I have built several applications using Node, Express, and Angular. Unfortunately, React land‑
scape is way too complex. It is quite a different ecosystem and a difficult one for beginners.

Things became very complicated when decided to use an existing React admin theme as the foun‑
dation for my project. I know what you are thinking, I really got myself in a mess. But that admin
template taught me few things which otherwise I have not learned as a React beginner.

Knowledgemap for React

In this post, I want to cover few things which will help you to develop beyond hello world React appli‑
cation.

ECMAScript 2015

ECMAScript 2015 (ES2015 also known as ES6) should be the obvious choice for writing React appli‑
cations. Unfortunately, ES2015 is not fully supported by the browser so you will need to use plug‑
ins such as Babel or Traceur. These plugins allow you to use new ES2015 syntax, right now without
waiting for browser support. They achieve this by compiling or transforming ES6 syntax to ES5. In
addition, they offer polyfill functionality to support new globals such as Promise or new native meth‑
ods like String.padStart. They can also support ES.next features i.e. proposals such as decorators,
async‑await, and static class properties. You can read a detailed overview of various ECMAScript 2015
features here. Inmy opinion, when it comes to developing React applications Babel ismore fit for pur‑
pose and popular compared to Traceur. Babel also includes React specific batteries i.e. React presets
to work with JSX and Flow. Babel also plays really well with your existing JavaScript build systems
including Grunt, RequireJS, Gulp, and Webpack.

You can try various ECMAScript 2015 features in the browser using JSBin without any installation.

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://babeljs.io/
https://github.com/google/traceur-compiler
https://babeljs.io/learn-es2015/
https://js.libhunt.com/project/traceur-compiler/vs/babel
https://jsbin.com/
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 2

Figure 1: Try ECMAScript 2015 at JSBin without any installation. You can select Babel or Traceur as
you JS compiler.

UI as Function of State

React takes a functional approach to UI. As described by Alexander Beletsky, React gives us the ability
to treat UI as a function of the state. In this case, function F is a stateless functional component and
state S represents the immutable state of data models, DOM, and side‑effects.

UI = F(S)

In addition, Redux represents a function that takes current state S and action as input and produces
next state Snext as output. This function is called Reducer.

Snext = R(S, action)

In other words, when we combine React with Redux, with each action the whole UI is re‑rendered.

Given UI = F(S) and Snext = R(S, action)

UI = F(R(S, action));

You may want to watch this video which describe the first principle of Redux ‑ state of your whole
application is stored in an object tree within a single store.

everything that changes in your application, including the data and the UI state, is contained in
a single object, we call the state or the state tree

A state is read‑only and immutable. The only way you can change the state of the store is by dispatch‑
ing an action on it. It is important to understand the distinction between Redux’s store and React’s
state. React state is local and ephemeral 1 2.

1How to choose between Redux store and React state?
2Where to Hold React Component Data

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://egghead.io/lessons/javascript-redux-the-single-immutable-state-tree
https://github.com/reactjs/redux/issues/1287
https://medium.freecodecamp.org/where-do-i-belong-a-guide-to-saving-react-component-data-in-state-store-static-and-this-c49b335e2a00
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 3

Redux store is great for keeping application state rather thanUI state. UI state and transitory data
are best served by React state.

Components and Props

React componentsare the independentbut reusablepieceof functionality. Propsare input. Onahigh‑
level, a component transforms props into UI. In React, you can describe components three different
ways,

• Using React.createClass (deprecated hence not recommended but it supports mixins to
components, Mixins aren’t supported in ES6 classes 3)

• ExtendingReact.Component orReact.PureComponent (compatiblewith ES6, have a lo‑
cal state and lifecycle methods 4)

• Stateless functional components (only has a render function with optional argument of props,
no state 5)

So following class‑based component ~~~ import React from ‘react’;

class App extends React.Component { render() { return

Hello World

; } }

export default App;

is same as below stateless functional component[^5] [^6],

import React from ‘react’;

const App = () =>

Hello World Stateless

;

export default App;

3React.createClass versus extends React.Component
4State and Lifecycle
5How do you decide, how do you choose between these three based on the purpose/size/props/behavior of our compo‑
nents?

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://toddmotto.com/react-create-class-versus-component/
https://facebook.github.io/react/docs/state-and-lifecycle.html
https://stackoverflow.com/a/40704083
https://stackoverflow.com/a/40704083
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 4

More importantly, whether you use class-based components or stateless
functional components, it should never modify its own props. Such as
function is called *pure* because they do not attempt to change their
inputs. Pure functions are predictable and they always return the same
output for the same inputs. On the opposite, *impure* functions may
have some observable side effects [^8].

As described above React offers a powerful composition model. It is highly
recommended to use components as composable units instead of

inheritance. Components can be stateless. If we are given three
components `C1(S)`, `C2(S)`, and `C3()` where C3 stateless function, as
described below we can compose them in many different ways.

C = f(C1(S), C2(S), C3())

where f can be a higher‑order component transform. ~~~

React‑Router

React‑Routeroffersdeclarative routing forReact applications. It keepsyourapplicationUI in syncwith
the URL by invoking right kind of components. React‑Router v4 is a complete rewrite and everything
is now just components 6. React‑Router supports dynamic routing i.e. routing that takes place as your
React application is rendering, not in a configuration or convention outside of a running application.
React‑Router also plays really nice with Redux.

dva framework

dva is a lightweight ELM‑style front‑end framework based on Redux, Redux‑Saga, and React‑Router.
At first instance, dva as framework looks quite promising but it has its own share of problems. First
of all, it was developed by engineering teams at Alibaba in China. So most of the documentation is
either Chinese or not very complete. Because it’s a wrapper on top of popular React libraries, you are
at the mercy of developer to update them. For instance, dva is still stuck at React‑Router v3.

6A detailed comparison of React‑Router v4 against v2/v3

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/guides/migrating.md
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 5

Figure 2: dva concepts and how they connect together. Some of these concepts are ELM inspired.

Overall, dva is easy to use. The companion tool dva‑cli is quite nifty and it can not only generate ap‑
plication skeleton but also various application building blocks such as routes, models and compo‑
nents.

You start by defining the models. When you create model using dva‑cli it generates a placeholder
model. Then you design and implement the components. You update models with reducers, ef‑
fects and subscriptions. Finally using react‑redux connect functionality you wire models and com‑
ponents.

After connect, component can use the data from model, and model can receive actions dispatched
from component. One last thing, define router to connect URL with UI components.

Container/component Architecture

Container/component architecture is one simple but powerful pattern 7 8. This is particularly useful if
youareusingRedux. Container components are responsible for how thingswork. Often theyare state‑
ful. Presentational components are dumb React components responsible for how things look. They
depend on container components for data and behavior, hence generally stateless. When implement‑
ing this pattern, we can either separate these component types in two different folders (container
and components) or use a naming convention which reflects the connection between two type of
corresponding components.

StockWidgetContainer => StockWidget
TagCloudContainer => TagCloud

7Presentational and Container Components
8Container Components

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@learnreact/container-components-c0e67432e005
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 6

React UI frameworks

There are several reusable React UI frameworks freely available on the web9. These frameworks pro‑
vide reusable component libraries enabling you to build your React application. For those who are
familiar with Bootstrap, React‑Bootstrap offers reusable UI components with look‑and‑feel of Boot‑
strap, albeit with much cleaner code. If you don’t like Bootstrap then you can try Ant Design, Seman‑
tic UI React, or Material‑UI. Ant Design offers built‑in internationalization for components and works
really well with dva framework. Obviously, with React‑Bootstrap, Material‑UI and Semantic UI React
you have to use an internationalization library such as react‑intl.

Styled components vs. Style Loaders

This was an eye‑opener for me. Traditionally React developers have used various style loaders to
implement styling. With style loaders, you write your component style code using CSS, Sass or Less
in a file and then load them using your build system.

// Button.css
.danger {
background-color: red;

}

// Button.js
import React from 'react';
import styles from './Button.css';

class Button extends React.Component {
render() {

return <button className={styles.danger}>Click me</button>;
}

}

Styled components basically allows you to write actual CSS inside your JavaScript. It removes the
mapping between styles and components.

import React from 'react';
import styled from 'styled-components';

// Create a <Title> react component that renders an <h1> which is
// centered, palevioletred and sized at 1.5em
const Title = styled.h1`
font-size: 1.5em;
text-align: center;
color: palevioletred;

`;

9Best UI Frameworks for your new React.js App

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://react-bootstrap.github.io/
https://ant.design/
https://react.semantic-ui.com/introduction
https://react.semantic-ui.com/introduction
http://www.material-ui.com/
https://github.com/yahoo/react-intl
https://github.com/css-modules/css-modules
https://github.com/webpack-contrib/sass-loader
https://github.com/webpack-contrib/less-loader
https://github.com/styled-components/styled-components
https://hackernoon.com/the-coolest-react-ui-frameworks-for-your-new-react-app-ad699fffd651
https://doi.org/10.59350/a4vzh-dhy95


What I’ve learned so far about React 7

// Create a <Wrapper> react component that renders a <section> with
// some padding and a papayawhip background
const Wrapper = styled.section`
padding: 4em;
background: papayawhip;

`;

// Use them like any other React component – except they're styled!
class Button extends React.Component {
render() {

return (
<Wrapper>

<Title>Hello {this.props.name}, your first styled component!</
Title>

...
</Wrapper>

);
}

}

React boilerplate

Finally, if youwant to create skeleton React application, you can use create‑react‑app. This will create
React applicationwithout build configuration. You need to create your ownbuild configurationwhich
in my opinion a lot of work. One of the reasons I liked dva was its ability to generate React applica‑
tion skeletonwith build configuration aswell various building blocks of the application. Alternatively,
you can use react‑boilerplate. Using react‑boilerplate can create components, containers, routes, se‑
lectors, sagas, corresponding tests ‑ right from the CLI. It comes with baked‑in build configuration.
I definitely recommend react‑boilerplate only if you are starting a big React project. Otherwise, for
small React applications use create‑react‑app.

Abhishek Tiwari 10.59350/a4vzh-dhy95 2017‑09‑25

https://github.com/facebookincubator/create-react-app
https://github.com/react-boilerplate/react-boilerplate
https://doi.org/10.59350/a4vzh-dhy95

	Knowledge map for React
	ECMAScript 2015
	UI as Function of State
	Components and Props
	React-Router
	dva framework
	Container/component Architecture
	React UI frameworks
	Styled components vs. Style Loaders
	React boilerplate


